7 datasets found
  1. 5. André Oliveira

    • hub.arcgis.com
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). 5. André Oliveira [Dataset]. https://hub.arcgis.com/documents/aa3734f37eaa4311ac17fd31645c5722
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r

  2. f

    OC 2017 LiDAR Image Service

    • data.ferndalemi.gov
    • detroitdata.org
    • +5more
    Updated Jan 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oakland County, Michigan (2019). OC 2017 LiDAR Image Service [Dataset]. https://data.ferndalemi.gov/datasets/9ded3291eb454ab69bc3620703c5d158
    Explore at:
    Dataset updated
    Jan 29, 2019
    Dataset authored and provided by
    Oakland County, Michigan
    Area covered
    Description

    BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE. The Classified Point Cloud (LAS) for the 2017 Michigan LiDAR project covering approximately 907 square miles, covering Oakland County. LAS data products are suitable for 1 foot contour generation. USGS LiDAR Base Specification 1.2, QL2. 19.6 cm NVA.This data is for planning purposes only and should not be used for legal or cadastral purposes. Any conclusions drawn from analysis of this information are not the responsibility of Sanborn Map Company. Users should be aware that temporal changes may have occurred since this dataset was collected and some parts of this dataset may no longer represent actual surface conditions. Users should not use these data for critical applications without a full awareness of its limitations. This service is best used directly within ArcMap or ArcGIS Pro.If the raw LiDAR points are needed, use these clients to extract project area size portions. Due to the density of the data, downloading the entire County from this service is not possible. For further questions, contact the Oakland County Service Center at 248-858-8812, servicecenter@oakgov.com.

  3. USA Federal Lands

    • gis-calema.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jul 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2019). USA Federal Lands [Dataset]. https://gis-calema.opendata.arcgis.com/datasets/usa-federal-lands
    Explore at:
    Dataset updated
    Jul 31, 2019
    Dataset provided by
    California Governor's Office of Emergency Services
    Authors
    CA Governor's Office of Emergency Services
    Area covered
    United States,
    Description

    In the United States, the federal government manages lands in significant parts of the country. These lands include 193 million acres managed by the US Forest Service in the nation's 154 National Forests and 20 National Grasslands, Bureau of Land Management lands that cover 247 million acres in Alaska and the Western United States, 150 million acres managed for wildlife conservation by the US Fish and Wildlife Service, 84 million acres of National Parks and other lands managed by the National Park Service and over 30 million acres managed by the Department of Defense. The Bureau of Reclamation manages a much smaller land base than the other agencies included in this layer but plays a critical role in managing the country's water resources.The agencies included in this layer are:Bureau of Land ManagementBureau of ReclamationDepartment of DefenseNational Park ServiceUS Fish and Wildlife ServiceUS Forest ServiceDataset SummaryPhenomenon Mapped: United States lands managed by six federal agencies Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, US Virgin Islands, Guam, American Samoa, and Northern Mariana Islands. The layer also includes National Monuments and Wildlife Refuges in the Pacific Ocean, Atlantic Ocean, and the Caribbean Sea.Visible Scale: The data is visible at all scales but draws best at scales greater than 1:2,000,000Source: BLM, DoD, USFS, USFWS, NPS, PADUS 2.1Publication Date: Various - Esri compiled and published this layer in May 2022. See individual agency views for data vintage.There are six layer views available that were created from this service. Each layer uses a filter to extract an individual agency from the service. For more information about the layer views or how to use them in your own project, follow these links:USA Bureau of Land Management LandsUSA Bureau of Reclamation LandsUSA Department of Defense LandsUSA National Park Service LandsUSA Fish and Wildlife Service LandsUSA Forest Service LandsWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "federal lands" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "federal lands" in the search box, browse to the layer then click OK.In both ArcGIS Online and Pro you can change the layer's symbology and view its attribute table. You can filter the layer to show subsets of the data using the filter button in Online or a definition query in Pro.The data can be exported to a file geodatabase, a shapefile or other format and downloaded using the Export Data button on the top right of this webpage.This layer can be used as an analytic input in both Online and Pro through the Perform Analysis window Online or as an input to a geoprocessing tool, model, or Python script in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.

  4. a

    WCC Wastewater Pump

    • data-wellingtonwater.opendata.arcgis.com
    Updated May 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwl_administrator (2023). WCC Wastewater Pump [Dataset]. https://data-wellingtonwater.opendata.arcgis.com/datasets/d70eead642bf49e393a3b199f0c63e8c
    Explore at:
    Dataset updated
    May 3, 2023
    Dataset authored and provided by
    wwl_administrator
    Area covered
    Description

    WCC 3 Waters Asset Data exported out of InfoAsset at Wellington Water Ltd (WWL). Made up of 19 layers. Please check the date for the latest Data Updated date. Height levels are in terms of NZVD2016 as of 1 July 2022. *It has limited symbology, scales and includes Abandoned, removed & virtual assets. The data can be added to an Arc Pro project and it allows viewing the attribute tables & change symbols. It's other purpose is that it can be download from our Open Data Portal. https://data-wellingtonwater.opendata.arcgis.com/

  5. a

    PCC 3Waters Asset Data

    • data-wellingtonwater.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jul 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwl_administrator (2022). PCC 3Waters Asset Data [Dataset]. https://data-wellingtonwater.opendata.arcgis.com/maps/599dbad3af174ce18ccfa8dad4564491
    Explore at:
    Dataset updated
    Jul 4, 2022
    Dataset authored and provided by
    wwl_administrator
    Area covered
    Description

    PCC 3Waters Asset Data exported from the Master Database at Wellington Water Ltd. It is made up of 19 layers. Please check the date for the latest Data Updated date.Height levels are in terms of NZVD2016 as of 1 July 2022.*This Federated Feature Service references our data in an Enterprise geodatabase (egdb) which is updated daily via FME workbench from InfoAsset. It has limited symbology and includes Abandoned, removed & virtual assets. It's purpose is so that staff can access the raw data which is updated daily. They can add it to their Arc Pro projects and it allows them to view the attribute tables & change symbols. It's other purpose is so that councils and the public can download the data form our Open Data Portal. It is only shared with our organisation in Enterprise because we dont want the public to use it as it is hosted on "our" server which is not as robust as the ESRI server. Also, if it's shared with the public, it may slow down the service for our staff. So every week it is copied to AGOL as a Hosted Feature Service which is shared with the public and our Open Data Portal.

  6. a

    WCC 3Waters Asset Data

    • data-wellingtonwater.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwl_administrator (2023). WCC 3Waters Asset Data [Dataset]. https://data-wellingtonwater.opendata.arcgis.com/maps/d70eead642bf49e393a3b199f0c63e8c
    Explore at:
    Dataset updated
    May 3, 2023
    Dataset authored and provided by
    wwl_administrator
    Area covered
    Description

    WCC 3 Waters Asset Data exported out of InfoAsset at Wellington Water Ltd (WWL). Made up of 19 layers. Please check the date for the latest Data Updated date. Height levels are in terms of NZVD2016 as of 1 July 2022. *It has limited symbology, scales and includes Abandoned, removed & virtual assets. The data can be added to an Arc Pro project and it allows viewing the attribute tables & change symbols. It's other purpose is that it can be download from our Open Data Portal. https://data-wellingtonwater.opendata.arcgis.com/

  7. a

    UHCC Wastewater Pumpstation

    • data-wellingtonwater.opendata.arcgis.com
    Updated May 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    wwl_administrator (2023). UHCC Wastewater Pumpstation [Dataset]. https://data-wellingtonwater.opendata.arcgis.com/datasets/5eba4829927b42c182a8de134ae07bc8
    Explore at:
    Dataset updated
    May 3, 2023
    Dataset authored and provided by
    wwl_administrator
    Area covered
    Description

    UHCC 3 Waters Asset Data exported out of InfoAsset at Wellington Water Ltd (WWL). Made up of 19 layers for water, stormwater & wastewater networks - pipes, manholes, hydrants, valves, pump stations, reservoirs, meters, fittings and stormwater open channels. Please check the date for the latest Data Updated date. Automation is currently on hold while we make some upgrades to the process (4/5/2023). Height levels are in terms of NZVD2016 as of 1 July 2022.*It has limited symbology, scales and includes Abandoned, removed & virtual assets & some privately owned assets. The data can be added to an Arc Pro project and it allows viewing the attribute tables & change symbols. It's other purpose is that it can be download from our Open Data Portal. https://data-wellingtonwater.opendata.arcgis.com/

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). 5. André Oliveira [Dataset]. https://hub.arcgis.com/documents/aa3734f37eaa4311ac17fd31645c5722
Organization logo

5. André Oliveira

Explore at:
44 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 2, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r

Search
Clear search
Close search
Google apps
Main menu