Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Portland town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Portland town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Portland town was 845, a 0.48% increase year-by-year from 2022. Previously, in 2022, Portland town population was 841, an increase of 1.20% compared to a population of 831 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Portland town increased by 182. In this period, the peak population was 845 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Portland population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Portland across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Portland was 13,482, a 1.10% increase year-by-year from 2021. Previously, in 2021, Portland population was 13,335, an increase of 0.98% compared to a population of 13,206 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Portland increased by 4,965. In this period, the peak population was 13,482 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Portland population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Portland. The dataset can be utilized to understand the population distribution of Portland by age. For example, using this dataset, we can identify the largest age group in Portland.
Key observations
The largest age group in Portland, ND was for the group of age 60 to 64 years years with a population of 83 (15.15%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Portland, ND was the 25 to 29 years years with a population of 4 (0.73%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Portland township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Portland township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Portland township was 3,932, a 0.25% increase year-by-year from 2021. Previously, in 2021, Portland township population was 3,922, an increase of 0.87% compared to a population of 3,888 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Portland township increased by 1,432. In this period, the peak population was 3,932 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland township Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the South Portland population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for South Portland. The dataset can be utilized to understand the population distribution of South Portland by age. For example, using this dataset, we can identify the largest age group in South Portland.
Key observations
The largest age group in South Portland, ME was for the group of age 20 to 24 years years with a population of 2,256 (8.42%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in South Portland, ME was the 85 years and over years with a population of 511 (1.91%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Portland Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Portland town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Portland town. The dataset can be utilized to understand the population distribution of Portland town by age. For example, using this dataset, we can identify the largest age group in Portland town.
Key observations
The largest age group in Portland Town, Dodge County, Wisconsin was for the group of age 60 to 64 years years with a population of 112 (13.29%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Portland Town, Dodge County, Wisconsin was the 80 to 84 years years with a population of 3 (0.36%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New Portland town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of New Portland town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of New Portland town was 767, a 0.39% increase year-by-year from 2021. Previously, in 2021, New Portland town population was 764, an increase of 0.13% compared to a population of 763 in 2020. Over the last 20 plus years, between 2000 and 2022, population of New Portland town decreased by 21. In this period, the peak population was 788 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Portland town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Portland. The dataset can be utilized to gain insights into gender-based income distribution within the Portland population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New Portland town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for New Portland town. The dataset can be utilized to understand the population distribution of New Portland town by age. For example, using this dataset, we can identify the largest age group in New Portland town.
Key observations
The largest age group in New Portland, Maine was for the group of age 60 to 64 years years with a population of 57 (9.98%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in New Portland, Maine was the 85 years and over years with a population of 3 (0.53%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Portland town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Towns in Time is a compilation of time series data for Victoria's towns covering the years 1981 to 2011. The data is based on Census data collected by the Australian Bureau of Statistics. Towns in Time presents 2011 data for the 2011 definition of each town, together with data under the 2006 definition for 2006 and earlier years. A map showing the difference in the town's boundaries between 2006 and 2011 is attached to each data sheet. It is recommended the user assess this concordance when using time series data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within South Portland. The dataset can be utilized to gain insights into gender-based income distribution within the South Portland population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South Portland median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within New Portland town. The dataset can be utilized to gain insights into gender-based income distribution within the New Portland town population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Portland town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Portland township. The dataset can be utilized to gain insights into gender-based income distribution within the Portland township population, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland township median household income by race. You can refer the same here
https://www.bco-dmo.org/dataset/701840/licensehttps://www.bco-dmo.org/dataset/701840/license
Mark recapture data for introduced crab in Seadrift Lagoon (Central California coast, shallow subtidal (<3 m depth)) in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trapping of invasive European green crabs to gather demographic data in Seadrift Lagoon, Stinson Beach, CA (lat 37.907440, long -122.6661694). All sites were accessed by either kayak or by foot via shore entry. At each of the six sites used for monthly trapping plus three additional sites, we placed 15 baited traps (folding Fukui fish traps) in shallow (<2 m) subtidal areas. Traps were retrieved 24 hours later and were rebaited and collected again the following day. Trapping was continued for four consecutive days with traps removed on the final day.\u00a0Crabs were marked by clipping two adjacent anterio-lateral spines.\u00a0Each day, data for crab species, size, sex, reproductive condition, injuries, and presence of marks were collected for all crabs in the field. Following data collection, all marked crabs were returned to the lagoon at the same site that the crabs were collected.\u00a0
See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for
additional methodological details:
Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing
population increase as a possible outcome to management of invasive species.
Biological Invasions, 18(2), pp 533\u2013548.
doi:10.1007/s10530-015-1026-9
awards_0_award_nid=699764
awards_0_award_number=OCE-1514893
awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893
awards_0_funder_name=NSF Division of Ocean Sciences
awards_0_funding_acronym=NSF OCE
awards_0_funding_source_nid=355
awards_0_program_manager=David L. Garrison
awards_0_program_manager_nid=50534
cdm_data_type=Other
comment=Mark recapture data for introduced crab in Seadrift Lagoon in 2015
PI: Edwin Grosholz (UC Davis)
Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
Version: 02 June 2017
Conventions=COARDS, CF-1.6, ACDD-1.3
data_source=extract_data_as_tsv version 2.3 19 Dec 2019
defaultDataQuery=&time<now
doi=10.1575/1912/bco-dmo.701840.1
Easternmost_Easting=-122.6661694
geospatial_lat_max=37.90744
geospatial_lat_min=37.90744
geospatial_lat_units=degrees_north
geospatial_lon_max=-122.6661694
geospatial_lon_min=-122.6661694
geospatial_lon_units=degrees_east
infoUrl=https://www.bco-dmo.org/dataset/701840
institution=BCO-DMO
instruments_0_dataset_instrument_description=At each of the six sites used for monthly trapping plus three additional sites, we placed 15 baited traps (folding Fukui fish traps) in shallow (
instruments_0_dataset_instrument_nid=701849
instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes.
instruments_0_instrument_name=Fukui fish trap
instruments_0_instrument_nid=701772
instruments_0_supplied_name=Fukui fish traps
metadata_source=https://www.bco-dmo.org/api/dataset/701840
Northernmost_Northing=37.90744
param_mapping={'701840': {'lat': 'master - latitude', 'lon': 'master - longitude'}}
parameter_source=https://www.bco-dmo.org/mapserver/dataset/701840/parameters
people_0_affiliation=University of California-Davis
people_0_affiliation_acronym=UC Davis
people_0_person_name=Edwin Grosholz
people_0_person_nid=699768
people_0_role=Principal Investigator
people_0_role_type=originator
people_1_affiliation=Portland State University
people_1_affiliation_acronym=PSU
people_1_person_name=Catherine de Rivera
people_1_person_nid=699771
people_1_role=Co-Principal Investigator
people_1_role_type=originator
people_2_affiliation=Portland State University
people_2_affiliation_acronym=PSU
people_2_person_name=Gregory Ruiz
people_2_person_nid=471603
people_2_role=Co-Principal Investigator
people_2_role_type=originator
people_3_affiliation=Woods Hole Oceanographic Institution
people_3_affiliation_acronym=WHOI BCO-DMO
people_3_person_name=Shannon Rauch
people_3_person_nid=51498
people_3_role=BCO-DMO Data Manager
people_3_role_type=related
project=Invasive_predator_harvest
projects_0_acronym=Invasive_predator_harvest
projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website.
This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier?
projects_0_end_date=2016-11
projects_0_geolocation=Europe
projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator
projects_0_project_nid=699765
projects_0_start_date=2014-12
sourceUrl=(local files)
Southernmost_Northing=37.90744
standard_name_vocabulary=CF Standard Name Table v55
subsetVariables=lagoon,latitude,longitude
version=1
Westernmost_Easting=-122.6661694
xml_source=osprey2erddap.update_xml() v1.3
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Portland town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Portland town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Portland town was 845, a 0.48% increase year-by-year from 2022. Previously, in 2022, Portland town population was 841, an increase of 1.20% compared to a population of 831 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Portland town increased by 182. In this period, the peak population was 845 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Portland town Population by Year. You can refer the same here