https://data.cityoftacoma.org/pages/disclaimerhttps://data.cityoftacoma.org/pages/disclaimer
Urban Heat Island images:MorningAfternoonEveningTacoma Heat Island StudyData collected on 7/25/2018, collected by Dr. Vivek Shandas, Capa StrategiesWhat Earth Economics is working on:Through grant funding, Earth Economics is working on building out an approach and methodology using Urban Heat Island modeling (LANDSAT data) to assume health impacts (mortality rates) on a census tract level, using research on how demographics and UHI impact community health outcomes.Variables:Name: Census Block Group NamePop: Census Block Group populationIncome: Average individual Census Block Group level annual incomeOver 65: Population over age 65Under14: Population under age 14AF: Afternoon temperature (C), averaged to Census Block Group (July 25, 2018). Data collected by Dr. Vivek Shandas using this methodologyPm: Evening temperature (C), averaged to Census Block Group (July 25, 2018)Combtemp: Average of evening and afternoon temperatureHighRiskAgeGroup: Percent of population in a high risk age group for heat related illness (over age 65 and under age 14)Density: Population DensityCity of Tacoma Contact: Vanessa Simpson, Senior Technical GIS Analyst, Environmental Servicesvsimpson@cityoftacoma.org
This pie chart illustrates the distribution of degrees among PERM graduates from Portland State University. The chart categorizes the percentages of Bachelor’s, Master’s, and Doctoral degrees, showcasing the educational composition of students who have pursued permanent residency through their qualifications at Portland State University. This visualization aids in understanding the diversity of educational backgrounds that contribute to the PERM applications, reflecting the school’s role in supporting students’ transitions to permanent residency in the U.S. Data is updated annually to reflect the most recent graduate outcomes.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Population Data from Portland State University Center for Population Research
https://www.bco-dmo.org/dataset/701751/licensehttps://www.bco-dmo.org/dataset/701751/license
Demographic data for introduced crab from multiple bays along the Central California coast, shallow subtidal (<3 m depth), in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trappings of invasive European green crabs to gather demographic data from several bays in northern California: Bodega Harbor, Tomales Bay, Bolinas Lagoon, San Francisco Bay, and Elkhorn Slough. All sites were accessed by foot via shore entry. At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas. Traps arrays were set with fish and minnow traps alternating and with each 20 m apart. Traps were retrieved 24 hours later and traps were rebaited and collected again the following day.\u00a0Trapping was continued for three consecutive days with traps removed on the final day.\u00a0Each day, data for crab species, size, sex, reproductive condition, and injuries were collected for all crabs in the field. Following data collection, all crabs were returned to the lab, and frozen overnight prior to disposal.\u00a0
See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for
additional methodological details:
Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing
population increase as a possible outcome to management of invasive species.
Biological Invasions, 18(2), pp 533\u2013548.
doi:10.1007/s10530-015-1026-9
awards_0_award_nid=699764
awards_0_award_number=OCE-1514893
awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893
awards_0_funder_name=NSF Division of Ocean Sciences
awards_0_funding_acronym=NSF OCE
awards_0_funding_source_nid=355
awards_0_program_manager=David L. Garrison
awards_0_program_manager_nid=50534
cdm_data_type=Other
comment=Demographic data for introduced crab from multiple bays in 2015
PI: Edwin Grosholz (UC Davis)
Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
Version: 15 June 2017
Conventions=COARDS, CF-1.6, ACDD-1.3
data_source=extract_data_as_tsv version 2.3 19 Dec 2019
defaultDataQuery=&time<now
doi=10.1575/1912/bco-dmo.701751.1
Easternmost_Easting=-121.738422
geospatial_lat_max=38.316968
geospatial_lat_min=36.823953
geospatial_lat_units=degrees_north
geospatial_lon_max=-121.738422
geospatial_lon_min=-123.058725
geospatial_lon_units=degrees_east
infoUrl=https://www.bco-dmo.org/dataset/701751
institution=BCO-DMO
instruments_0_dataset_instrument_description=At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas.
instruments_0_dataset_instrument_nid=701774
instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes.
instruments_0_instrument_name=Fukui fish trap
instruments_0_instrument_nid=701772
instruments_0_supplied_name=folding Fukui fish traps
metadata_source=https://www.bco-dmo.org/api/dataset/701751
Northernmost_Northing=38.316968
param_mapping={'701751': {'lat': 'master - latitude', 'lon': 'master - longitude'}}
parameter_source=https://www.bco-dmo.org/mapserver/dataset/701751/parameters
people_0_affiliation=University of California-Davis
people_0_affiliation_acronym=UC Davis
people_0_person_name=Edwin Grosholz
people_0_person_nid=699768
people_0_role=Principal Investigator
people_0_role_type=originator
people_1_affiliation=Portland State University
people_1_affiliation_acronym=PSU
people_1_person_name=Catherine de Rivera
people_1_person_nid=699771
people_1_role=Co-Principal Investigator
people_1_role_type=originator
people_2_affiliation=Portland State University
people_2_affiliation_acronym=PSU
people_2_person_name=Gregory Ruiz
people_2_person_nid=471603
people_2_role=Co-Principal Investigator
people_2_role_type=originator
people_3_affiliation=Woods Hole Oceanographic Institution
people_3_affiliation_acronym=WHOI BCO-DMO
people_3_person_name=Shannon Rauch
people_3_person_nid=51498
people_3_role=BCO-DMO Data Manager
people_3_role_type=related
project=Invasive_predator_harvest
projects_0_acronym=Invasive_predator_harvest
projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website.
This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier?
projects_0_end_date=2016-11
projects_0_geolocation=Europe
projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator
projects_0_project_nid=699765
projects_0_start_date=2014-12
sourceUrl=(local files)
Southernmost_Northing=36.823953
standard_name_vocabulary=CF Standard Name Table v55
version=1
Westernmost_Easting=-123.058725
xml_source=osprey2erddap.update_xml() v1.3
https://www.bco-dmo.org/dataset/701863/licensehttps://www.bco-dmo.org/dataset/701863/license
Demographic data from introduced crab in Seadrift Lagoon (Central California coast, shallow subtidal (<3 m depth)) in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trapping of invasive European green crabs to gather demographic data in Seadrift Lagoon, Stinson Beach, CA (lat 37.907440 long -122.666169).\u00a0All sites were accessed by either kayak or by foot via shore entry.\u00a0At each of six sites, we placed 10 baited traps (folding Fukui fish traps) in shallow (<2 m) subtidal areas. Traps were retrieved 24 hours later and were rebaited and collected again the following day.\u00a0Trapping was continued for three consecutive days with traps removed on the final day.\u00a0Each day, data for crab species, size, sex, reproductive condition, injuries, and presence of marks were collected for all crabs in the field. Following data collection, all crabs were returned to the lab, frozen overnight disposed of in commercial agricultural compost. \u00a0
For each date and site, crabs from all traps (e.g. 10 traps per site) are
pooled for counting and measuring.
Traps Used for each date (some with macroalgae "Ulva"):
02/19/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva
02/20/2015\u00a0\u00a0 \u00a010 baited traps + 5 with ulva
03/05/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva per site
03/06/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva
03/24/2015\u00a0\u00a0 \u00a010 traps/site
04/08/2015\u00a0\u00a0 \u00a010 traps/site
04/15/2015\u00a0\u00a0 \u00a010 baited traps + 4 traps with ulva
04/24/2015\u00a0\u00a0 \u00a010 traps/site
05/27/2015\u00a0\u00a0 \u00a0site 1 & 5 had 10 traps, site 3 had 9 traps
06/23/2015\u00a0\u00a0 \u00a0site 1 & 3 had 15 traps, site 5 had 14 traps
06/24/2015\u00a0\u00a0 \u00a0site 1 & 3 had 15 traps, site 5 had 14 traps
07/21/2015\u00a0\u00a0 \u00a0traps per site: site 1=20, site 2=20, site
3=17, site 4=15, site 5=10, site 6=10, site 7=20
08/25/2017\u00a0\u00a0 \u00a010 traps/site
08/26/2015\u00a0\u00a0 \u00a010 traps/site
08/27/2015\u00a0\u00a0 \u00a010 traps/site
09/01/2015\u00a0\u00a0 \u00a010 traps/site
09/02/2015\u00a0\u00a0 \u00a010 traps/site
09/30/2015\u00a0\u00a0 \u00a010 traps/site
10/01/2015\u00a0\u00a0 \u00a010 traps/site
10/02/2015\u00a0\u00a0 \u00a010 traps/site
12/01/2015\u00a0\u00a0 \u00a010 traps/site
12/02/2015\u00a0\u00a0 \u00a010 traps/site
12/03/2015\u00a0\u00a0 \u00a010 traps/site
See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for
additional methodological details:
Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing
population increase as a possible outcome to management of invasive species.
Biological Invasions, 18(2), pp 533\u2013548.
doi:10.1007/s10530-015-1026-9
awards_0_award_nid=699764
awards_0_award_number=OCE-1514893
awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893
awards_0_funder_name=NSF Division of Ocean Sciences
awards_0_funding_acronym=NSF OCE
awards_0_funding_source_nid=355
awards_0_program_manager=David L. Garrison
awards_0_program_manager_nid=50534
cdm_data_type=Other
comment=Monthly trapping in Seadrift Lagoon in 2015
PI: Edwin Grosholz (UC Davis)
Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
Version: 02 June 2017
Conventions=COARDS, CF-1.6, ACDD-1.3
data_source=extract_data_as_tsv version 2.3 19 Dec 2019
defaultDataQuery=&time<now
doi=10.1575/1912/bco-dmo.701863.1
Easternmost_Easting=-122.6661694
geospatial_lat_max=37.90744
geospatial_lat_min=37.90744
geospatial_lat_units=degrees_north
geospatial_lon_max=-122.6661694
geospatial_lon_min=-122.6661694
geospatial_lon_units=degrees_east
infoUrl=https://www.bco-dmo.org/dataset/701863
institution=BCO-DMO
instruments_0_dataset_instrument_description=At each of the six sites used for monthly trapping plus three additional sites, we placed 15 baited traps (folding Fukui fish traps) in shallow (
instruments_0_dataset_instrument_nid=701870
instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes.
instruments_0_instrument_name=Fukui fish trap
instruments_0_instrument_nid=701772
instruments_0_supplied_name=Fukui fish traps
metadata_source=https://www.bco-dmo.org/api/dataset/701863
Northernmost_Northing=37.90744
param_mapping={'701863': {'lat': 'master - latitude', 'lon': 'master - longitude'}}
parameter_source=https://www.bco-dmo.org/mapserver/dataset/701863/parameters
people_0_affiliation=University of California-Davis
people_0_affiliation_acronym=UC Davis
people_0_person_name=Edwin Grosholz
people_0_person_nid=699768
people_0_role=Principal Investigator
people_0_role_type=originator
people_1_affiliation=Portland State University
people_1_affiliation_acronym=PSU
people_1_person_name=Catherine de Rivera
people_1_person_nid=699771
people_1_role=Co-Principal Investigator
people_1_role_type=originator
people_2_affiliation=Portland State University
people_2_affiliation_acronym=PSU
people_2_person_name=Gregory Ruiz
people_2_person_nid=471603
people_2_role=Co-Principal Investigator
people_2_role_type=originator
people_3_affiliation=Woods Hole Oceanographic Institution
people_3_affiliation_acronym=WHOI BCO-DMO
people_3_person_name=Shannon Rauch
people_3_person_nid=51498
people_3_role=BCO-DMO Data Manager
people_3_role_type=related
project=Invasive_predator_harvest
projects_0_acronym=Invasive_predator_harvest
projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website.
This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier?
projects_0_end_date=2016-11
projects_0_geolocation=Europe
projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator
projects_0_project_nid=699765
projects_0_start_date=2014-12
sourceUrl=(local files)
Southernmost_Northing=37.90744
standard_name_vocabulary=CF Standard Name Table v55
subsetVariables=lagoon,latitude,longitude
version=1
Westernmost_Easting=-122.6661694
xml_source=osprey2erddap.update_xml() v1.3
This pie chart illustrates the distribution of degrees—Bachelor’s, Master’s, and Doctoral—among PERM graduates from Portland State University. It shows the educational composition of students who have pursued and successfully obtained permanent residency through their qualifications in Portland State University. This visualization helps to understand the diversity of educational backgrounds that contribute to successful PERM applications, reflecting the major’s role in fostering students’ career paths towards permanent residency in the U.S.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
PREMISE OF THE STUDY: Sex ratio variation occurs widely in dioecious plants, but the mechanisms of population sex ratios bias are poorly-understood. In bryophytes, sex ratios are often female-biased, and little information is available about how and when bias forms. METHODS: To test whether population sex ratio variation can emerge during the gametophytic phase, and is not purely a product of spore sex ratios, we created artificial populations of the moss Ceratodon purpureus, with male- and female-biased sex ratios, and placed half under a stress treatment. We hypothesized that male-majority populations would become female-biased, and that stress would increase this transition. After 18 months when sporophytes were initially forming, we used sex-specific molecular markers to determine population sex ratios. KEY RESULTS: Female-majority populations did not differ significantly from their original bias, while male-majority populations became significantly more female-biased. As plants had only just produced their first spores, these sex ratio changes occurred during the gametophytic generation due to sex-specific growth or survival. Sporophytes only occurred in populations with female-biased final sex ratios, suggesting that females in male-majority populations may have invested energy in ramets rather than sporophyte production. The stress treatment was mild and had no effect on sex ratio. CONCLUSIONS: Our results suggest that female-bias can be generated during the gametophytic generation, before plants reach sexual maturity. These results, combined with previous work, suggest that both the gametophytic and sporophytic stages drive population sex ratios in C. purpureus, indicating multiple mechanisms operate to create biased population sex ratios.
https://www.bco-dmo.org/dataset/701840/licensehttps://www.bco-dmo.org/dataset/701840/license
Mark recapture data for introduced crab in Seadrift Lagoon (Central California coast, shallow subtidal (<3 m depth)) in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trapping of invasive European green crabs to gather demographic data in Seadrift Lagoon, Stinson Beach, CA (lat 37.907440, long -122.6661694). All sites were accessed by either kayak or by foot via shore entry. At each of the six sites used for monthly trapping plus three additional sites, we placed 15 baited traps (folding Fukui fish traps) in shallow (<2 m) subtidal areas. Traps were retrieved 24 hours later and were rebaited and collected again the following day. Trapping was continued for four consecutive days with traps removed on the final day.\u00a0Crabs were marked by clipping two adjacent anterio-lateral spines.\u00a0Each day, data for crab species, size, sex, reproductive condition, injuries, and presence of marks were collected for all crabs in the field. Following data collection, all marked crabs were returned to the lagoon at the same site that the crabs were collected.\u00a0
See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for
additional methodological details:
Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing
population increase as a possible outcome to management of invasive species.
Biological Invasions, 18(2), pp 533\u2013548.
doi:10.1007/s10530-015-1026-9
awards_0_award_nid=699764
awards_0_award_number=OCE-1514893
awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893
awards_0_funder_name=NSF Division of Ocean Sciences
awards_0_funding_acronym=NSF OCE
awards_0_funding_source_nid=355
awards_0_program_manager=David L. Garrison
awards_0_program_manager_nid=50534
cdm_data_type=Other
comment=Mark recapture data for introduced crab in Seadrift Lagoon in 2015
PI: Edwin Grosholz (UC Davis)
Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
Version: 02 June 2017
Conventions=COARDS, CF-1.6, ACDD-1.3
data_source=extract_data_as_tsv version 2.3 19 Dec 2019
defaultDataQuery=&time<now
doi=10.1575/1912/bco-dmo.701840.1
Easternmost_Easting=-122.6661694
geospatial_lat_max=37.90744
geospatial_lat_min=37.90744
geospatial_lat_units=degrees_north
geospatial_lon_max=-122.6661694
geospatial_lon_min=-122.6661694
geospatial_lon_units=degrees_east
infoUrl=https://www.bco-dmo.org/dataset/701840
institution=BCO-DMO
instruments_0_dataset_instrument_description=At each of the six sites used for monthly trapping plus three additional sites, we placed 15 baited traps (folding Fukui fish traps) in shallow (
instruments_0_dataset_instrument_nid=701849
instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes.
instruments_0_instrument_name=Fukui fish trap
instruments_0_instrument_nid=701772
instruments_0_supplied_name=Fukui fish traps
metadata_source=https://www.bco-dmo.org/api/dataset/701840
Northernmost_Northing=37.90744
param_mapping={'701840': {'lat': 'master - latitude', 'lon': 'master - longitude'}}
parameter_source=https://www.bco-dmo.org/mapserver/dataset/701840/parameters
people_0_affiliation=University of California-Davis
people_0_affiliation_acronym=UC Davis
people_0_person_name=Edwin Grosholz
people_0_person_nid=699768
people_0_role=Principal Investigator
people_0_role_type=originator
people_1_affiliation=Portland State University
people_1_affiliation_acronym=PSU
people_1_person_name=Catherine de Rivera
people_1_person_nid=699771
people_1_role=Co-Principal Investigator
people_1_role_type=originator
people_2_affiliation=Portland State University
people_2_affiliation_acronym=PSU
people_2_person_name=Gregory Ruiz
people_2_person_nid=471603
people_2_role=Co-Principal Investigator
people_2_role_type=originator
people_3_affiliation=Woods Hole Oceanographic Institution
people_3_affiliation_acronym=WHOI BCO-DMO
people_3_person_name=Shannon Rauch
people_3_person_nid=51498
people_3_role=BCO-DMO Data Manager
people_3_role_type=related
project=Invasive_predator_harvest
projects_0_acronym=Invasive_predator_harvest
projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website.
This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier?
projects_0_end_date=2016-11
projects_0_geolocation=Europe
projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator
projects_0_project_nid=699765
projects_0_start_date=2014-12
sourceUrl=(local files)
Southernmost_Northing=37.90744
standard_name_vocabulary=CF Standard Name Table v55
subsetVariables=lagoon,latitude,longitude
version=1
Westernmost_Easting=-122.6661694
xml_source=osprey2erddap.update_xml() v1.3
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://data.cityoftacoma.org/pages/disclaimerhttps://data.cityoftacoma.org/pages/disclaimer
Urban Heat Island images:MorningAfternoonEveningTacoma Heat Island StudyData collected on 7/25/2018, collected by Dr. Vivek Shandas, Capa StrategiesWhat Earth Economics is working on:Through grant funding, Earth Economics is working on building out an approach and methodology using Urban Heat Island modeling (LANDSAT data) to assume health impacts (mortality rates) on a census tract level, using research on how demographics and UHI impact community health outcomes.Variables:Name: Census Block Group NamePop: Census Block Group populationIncome: Average individual Census Block Group level annual incomeOver 65: Population over age 65Under14: Population under age 14AF: Afternoon temperature (C), averaged to Census Block Group (July 25, 2018). Data collected by Dr. Vivek Shandas using this methodologyPm: Evening temperature (C), averaged to Census Block Group (July 25, 2018)Combtemp: Average of evening and afternoon temperatureHighRiskAgeGroup: Percent of population in a high risk age group for heat related illness (over age 65 and under age 14)Density: Population DensityCity of Tacoma Contact: Vanessa Simpson, Senior Technical GIS Analyst, Environmental Servicesvsimpson@cityoftacoma.org