Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
https://www.immport.org/agreementhttps://www.immport.org/agreement
Background: Households are hot spots for severe acute respiratory syndrome coronavirus 2 transmission. Methods: This prospective study enrolled 100 coronavirus disease 2019 (COVID-19) cases and 208 of their household members in North Carolina though October 2020, including 44% who identified as Hispanic or non-White. Households were enrolled a median of 6 days from symptom onset in the index case. Incident secondary cases within the household were detected using quantitative polymerase chain reaction of weekly nasal swabs (days 7, 14, 21) or by seroconversion at day 28. Results: Excluding 73 household contacts who were PCR-positive at baseline, the secondary attack rate (SAR) among household contacts was 32% (33 of 103; 95% confidence interval [CI], 22%-44%). The majority of cases occurred by day 7, with later cases confirmed as household-acquired by viral sequencing. Infected persons in the same household had similar nasopharyngeal viral loads (intraclass correlation coefficient = 0.45; 95% CI, .23-.62). Households with secondary transmission had index cases with a median viral load that was 1.4 log10 higher than those without transmission (P = .03), as well as higher living density (more than 3 persons occupying fewer than 6 rooms; odds ratio, 3.3; 95% CI, 1.02-10.9). Minority households were more likely to experience high living density and had a higher risk of incident infection than did White households (SAR, 51% vs 19%; P = .01). Conclusions: Household crowding in the context of high-inoculum infections may amplify the spread of COVID-19, potentially contributing to disproportionate impact on communities of color.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.
Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with historical case and percent positivity data for each county from January 22, 2020 (Weekly Historical Changes dataset) and a dataset with the levels as originally posted (Weekly Originally Posted dataset) since October 20, 2022. Please navigate to the Weekly Originally Posted dataset for the Community Transmission Levels published weekly on Thursdays.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers.
This dataset is created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.
Archived data CDC has archived two prior versions of these datasets. Both versions contain the same 7 data elements reflecting community transmission levels for all available counties and jurisdictions; however, the datasets updated daily. The archived datasets can be found here:
Archived Originally Posted dataset
Archived Historical Changes dataset
Archived Data Notes:
October 27, 2022: Due to a processing issue this dataset will not be posted this week. CDC is currently working to address the issue and will publish the data when able.
November 10, 2022: As of 11/10/2022, this dataset will continue to incorporate historical updates made to case and percent positivity data; however, community transmission level will only be published in the corresponding Weekly COVID-19 County Level of Community Transmission as Originally Posted dataset (Weekly Originally Posted dataset).
Note:
October 20, 2022: Due to a data reporting error, the case rate for Philadelphia County, Pennsylvania is lower than expected in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Level for Philadelphia County being underestimated; therefore, it should be interpreted with caution.
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 3, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Missouri counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 10, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Alabama counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Per the request of the jurisdiction, cases among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases.
November 10, 2022: In the COVID-19 Community Transmission Level data released on November 10, 2022, multiple municipalities in Puerto Rico are reporting higher than expected increases in case counts. CDC is working with territory officials to verify the data submitted.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the COVID-19 Community Transmission Level data released on December 1, 2022. Therefore, the COVID-19 Community Transmission Levels may be underestimated and should be interpreted with caution.
December 22, 2022: Due to an internal revision process, case rates for some Tennessee counties may appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Tennessee counties may be overestimated and should be interpreted with caution.
December 22, 2022: Due to reporting of a backlog of historic COVID-19 cases, case rates for some Louisiana counties will appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Louisiana counties may be overestimated and should be interpreted with caution.
December 29, 2022: Due to technical difficulties, county data from Alabama could not be incorporated via standard practices. As a result, case and death metrics will be reported as 0 in the December 29, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for Alabama counties will be underestimated and should be interpreted with caution.
January 5, 2023: Due to a reporting cadence issue, case rates for all Alabama counties will be calculated based on 14 days’ worth of case count data in the COVID-19 Community Transmission Level information released on January 5, 2023, instead of the customary 7 days’ worth of case count data. Therefore, the weekly case rates will be overestimated, which could affect counties’ COVID-19 Community Transmission Level classification and should be interpreted with caution.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case metrics will appear higher than expected in the January 5, 2023, weekly release. COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case data will be reported as 0. As a result, case metrics will appear lower than expected in the January 12, 2023, weekly release. COVID-19 Community Transmission metrics may be underestimated and should be interpreted with caution.
January 13, 2023: Aggregate case data released for Los Angeles County, California for the week of December 22nd, 2022, and December 29th, 2022, have been corrected for a data processing error.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release. Therefore, COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The North Carolina self-storage market, valued at approximately $XX million in 2025, is experiencing steady growth, projected to expand at a compound annual growth rate (CAGR) of 4.97% from 2025 to 2033. This growth is driven by several factors, including a rising population in major metropolitan areas like Charlotte, Raleigh, Greensboro, and Durham, increasing urbanization, and a growing demand for flexible and convenient storage solutions among both residential and commercial customers. The increasing popularity of e-commerce and the subsequent need for businesses to manage inventory efficiently further contributes to market expansion. Furthermore, the state's robust economy and a consistent influx of new residents fuel the need for additional storage space. While land availability and construction costs represent potential restraints, the strong demand continues to outweigh these challenges, supporting a positive outlook for the sector. The market is segmented by user type (personal and business) and geography, with Charlotte, Raleigh, Greensboro, Durham, and Winston-Salem comprising the most significant regional markets. Competition is relatively high, with established players like Life Storage Inc, Cubesmart LP, and several regional operators vying for market share. The consistent growth projections suggest a lucrative opportunity for existing and new entrants alike. The segmentation by user type reveals a dynamic interplay between personal and business storage needs. While personal storage caters to individual relocation, decluttering, and seasonal storage needs, the business segment reflects a growing demand for storage solutions by entrepreneurs, small and medium-sized enterprises (SMEs), and large corporations. The geographic segmentation highlights the importance of strategically targeting major urban centers experiencing population growth and economic expansion. Future market performance will likely be influenced by factors such as economic conditions, real estate prices, and the continued development of innovative self-storage solutions and technologies. This detailed analysis provides a comprehensive overview of the North Carolina self-storage market, offering insights for investors, businesses, and stakeholders operating within this dynamic sector. Recent developments include: March 2023 - A brand-new self-storage facility that MV is building in Fayetteville, North Carolina, is also almost finished. The building at 5234 Raeford Road, which was constructed on 9 acres, has 808 units and 105,000 gross square feet of space. The opening date was set for April 1. A development, building, and property management company with a focus on multifamily and self-storage buildings is MV. More than 1.5 million square feet of self-storage have been built by it thus far., August 2022 - CBRE, commercial real estate services and investment firm, announced the USD 23.6 million sales of two extra space storage facilities outside Charlotte, North Carolina. Lakeland Village acquired the portfolio from a private investor. Furthermore, the portfolio of 136,994 square feet includes extra space storage locations in Mooresville and Salisbury, North Carolina, the 66,000 square foot Salisbury facility, which can be found at 725 Jake Alexander Blvd. S. has 680 self-storage units that range in size from 5x5 feet to 10x30 feet.. Key drivers for this market are: Increased Urbanization, Coupled with Smaller Living Spaces, Improved Economic Outlook and Innovative Trends. Potential restraints include: Increased Urbanization, Coupled with Smaller Living Spaces, Improved Economic Outlook and Innovative Trends. Notable trends are: Personal Segment to Hold Major Market Share.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.
Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.
CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/covid-data-tracker/index.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html
Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.
Archived Data Notes:
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths.
November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.
January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.
January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.
February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.
February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.
February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.
February 16, 2023: Due to a reporting cadence change, Maine’s
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes
Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status
Dataset and data visualization details:
These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.
Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.
Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.
Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
The 2018 Nigeria AIDS Indicator and Impact Survey (NAIIS) is a cross-sectional survey that will assess the prevalence of key human immunodeficiency virus (HIV)-related health indicators. This survey is a two-stage cluster survey of 88,775 randomly-selected households in Nigeria, sampled from among 3,551 nationally-representative sample clusters. The survey is expected to include approximately 168,029 participants, ages 15-64 years and children, ages 0-14 years, from the selected household. The 2018 NAIIS will characterize HIV incidence, prevalence, viral load suppression, CD4 T-cell distribution, and risk behaviors in a household-based, nationally-representative sample of the population of Nigeria, and will describe uptake of key HIV prevention, care, and treatment services. The 2018 NAIIS will also estimate the prevalence of hepatitis B virus (HBV), hepatitis C virus (HCV) infections, and HBV/HIV and HCV/HIV co-infections.
National coverage, the survey covered the Federal Republic and was undertaken in each state and the Federal Capital.
Household Health Survey
Sample survey data [ssd]
This cross-sectional, household-based survey uses a two-stage cluster sampling design (enumeration area followed by households). The target population is people 15-64 and children ages 0-14 years. The overall size and distribution of the sample is determined by analysis of existing estimates of national HIV incidence, sub-national HIV prevalence, and the number of HIV-positive cases needed to obtain estimates of VLS among adults 15-64 years for each of the 36 states and the FCT while not unnecessarily inflating the sample size needed.
From a sampling perspective, the three primary objectives of this proposal are based on competing demands, one focused on national incidence and the other on state-level estimates in a large number of states (37). Since the denominator used for estimating VLS is HIV-positive individuals, the required minimum number of blood draws in a stratum is inversely proportional to the expected HIV prevalence rate in that stratum. This objective requires a disproportionate amount of sample to be allocated to states with the lowest prevalence. A review of state-level prevalence estimates for sources in the last 3 to 5 years shows that state-level estimates are often divergent from one source to the next, making it difficult to ascertain the sample size needed to obtain the roughly 100 PLHIV needed to achieve a 95% confidence interval (CI) of +/- 10 for VLS estimates.
An equal-size approach is proposed with a sample size of 3,700 blood specimens in each state. Three-thousand seven hundred specimens will be sufficiently large to obtain robust estimates of HIV prevalence and VLS among HIV-infected individuals in most states. In states with a HIV prevalence above 2.5%, we can anticipate 95% CI of less than +/-10% and relative standard errors (RSEs) of less than 11% for estimates of VLS. In these states, with HIV prevalence above 2.5%, the anticipated 95% CI around prevalence is +/- 0.7% to a high of 1.1-1.3% in states with prevalence above 6%. In states with prevalence between 1.2 and 2.5% HIV prevalence estimates would remain robust with 95% CI of +/- 0.5-0.6% and RSE of less than 20% while 95% CI around VLS would range between 10-15% (and RSE below 15%). With this proposal only a few states, with HIV prevalence below 1.0%, would have less than robust estimates for VLS and HIV prevalence.
Face-to-face [f2f]
Three questionnaires were used for the 2018 NAIIS: Household Questionnaire, Adult Questionnaire, and Early Adolescent Questionnaire (10-14 Years).
During the household data collection, questionnaire and laboratory data were transmitted between tablets via Bluetooth connection. This facilitated synchronization of household rosters and ensured data collection for each participant followed the correct pathway. All field data collected in CSPro and the Laboratory Data Management System (LDMS) were transmitted to a central server using File Transfer Protocol Secure (FTPS) over a 4G or 3G telecommunication provider at least once a day. Questionnaire data cleaning was conducted using CSPro and SAS 9.4 (SAS Institute Inc., Cary, North Carolina, United States). Laboratory data were cleaned and merged with the final questionnaire database using unique specimen barcodes and study identification numbers.
A total of 101,267 households were selected, 89,345 were occupied and 83,909 completed the household interview . • For adults aged 15-64 years, interview response rate was 91.6% for women and 88.2% for men; blood draw response rate was 92.9% for women and 93.6% for men. • For adolescents aged 10-14 years, interview response rate was 86.8% for women and 86.2% for men; blood draw response rate was 91.2% for women and 92.3% for men. • For children aged 0-9 years, blood draw response rate was 68.5% for women and men.
Estimates from sample surveys are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors result from mistakes made during data collection, e.g., misinterpretation of an HIV test result and data management errors such as transcription errors during data entry. While NAIIS implemented numerous quality assurance and control measures to minimize non-sampling errors, these were impossible to avoid and difficult to evaluate statistically. In contrast, sampling errors can be evaluated statistically. Sampling errors are a measure of the variability between all possible samples.
The sample of respondents selected for NAIIS was only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples could yield results that differed somewhat from the results of the actual sample selected. Although the degree of variability cannot be known exactly, it can be estimated from the survey results. The standard error, which is the square root of the variance, is the usual measurement of sampling error for a statistic (e.g., proportion, mean, rate, count). In turn, the standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of approximately plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
NAIIS utilized a multi-stage stratified sample design, which required complex calculations to obtain sampling errors. The Taylor linearization method of variance estimation was used for survey estimates that are proportions, e.g., HIV prevalence. The Jackknife repeated replication method was used for variance estimation of more complex statistics such as rates, e.g., annual HIV incidence and counts such as the number of people living with HIV.
The Taylor linearization method treats any percentage or average as a ratio estimate, , where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration. The variance of r is computed using the formula given below, with the standard error being the square root of the variance: in which Where represents the stratum, which varies from 1 to H, is the total number of clusters selected in the hth stratum, is the sum of the weighted values of variable y in the ith cluster in the hth stratum, is the sum of the weighted number of cases in the ith cluster in the hth stratum and, f is the overall sampling fraction, which is so small that it is ignored.
In addition to the standard error, the design effect for each estimate is also calculated. The design effect is defined as the ratio of the standard error using the given sample design to the standard error that would result if a simple random sample had been used. A design effect of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. Confidence limits for the estimates, which are calculated as where t(0.975, K) is the 97.5th percentile of a t-distribution with K degrees of freedom, are also computed.
Remote data quality check was carried out using data editor
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Women in low-income communities are disproportionately affected by HIV yet have been largely left out of efforts to raise awareness about pre-exposure prophylaxis (PrEP). To inform future awareness campaigns, we assessed women’s current knowledge of and attitudes toward PrEP. We surveyed 184 women living in public housing communities in North Carolina regarding PrEP knowledge, attitudes, and perceived norms, as well as reported HIV-associated factors and perceived HIV acquisition chances. 38 women participated in eight focus group discussions (FGDs) addressing personal and community PrEP perceptions. Survey participants were 46 years old on average, and 86% identified as Black/African American. Only 35% had heard of PrEP, yet, after being told what it was, 61% said they probably or definitely would take PrEP in the next 6 months. Most women believed that if they decided to take PrEP, their partner (72%) or their family (66%) would approve. When asked about the importance of factors influencing their interest in PrEP, women most frequently rated possible side effects as important or very important (76%), followed by cost considerations (67% for cost of PrEP, 74% for cost of clinic visits and labs). In the FGDs, women had limited PrEP knowledge, but several had heard of PrEP from television commercials, which gave them the impression that PrEP was only for men. Women were concerned about potential side effects, interactions with other medications, safety during pregnancy, and the burden of daily dosing. Most FGD participants expressed generally positive attitudes toward PrEP, but some thought other women would be uninterested due to low perceived chances of HIV acquisition. Overall, these results suggest that while few women had previously heard of PrEP, most were interested in PrEP after receiving information about it and perceived positive community attitudes toward PrEP. Our findings indicate the importance of community-based PrEP communication that speaks to cisgender women, provides information on side effects, and offers destigmatized messaging regarding reasons for HIV prevention for women to consider.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases