COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an
As of March 10, 2023, the state with the highest rate of COVID-19 cases was Rhode Island followed by Alaska. Around 103.9 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers of infections.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak as a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time; when the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide is roughly 683 million, and it has affected almost every country in the world.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. Those aged 85 years and older have accounted for around 27 percent of all COVID deaths in the United States, although this age group makes up just two percent of the total population
In 2022, Mauritius achieved the highest overall score (2.57) in the Positive Peace Index (PPI) in Africa. This put the country in a high state of positive peace. Other African countries with high levels of positive peace included Botswana, Tunisia, South Africa, and Ghana, each with a score lower than three points. According to the index, a PPI of one point represents a very high level of peace in a country, while an index between 2.53 and 3.17 points indicates a high level of peace. A total of 163 countries are considered in the index.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid positive rate. The latest data for over 100 countries around the world.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya has registered over 300,000 cases of COVID-19 and is a high-burden tuberculosis country. Tuberculosis diagnosis was significantly disrupted by the pandemic. Access to timely diagnosis, which is key to effective management of tuberculosis and COVID-19, can be expanded and made more efficient through integrated screening. Decentralized testing at community level further increases access, especially for underserved populations, and requires robust systems for data and process management. This study delivered integrated COVID-19 and tuberculosis testing to commercial motorbike (Bodaboda) riders, a population at increased risk of both diseases with limited access to services, in four counties: Nairobi, Kiambu, Machakos and Kajiado. Testing sheds were established where riders congregate, with demand creation carried out by the Bodaboda association. Integrated symptom screening for tuberculosis and COVID-19 was conducted through a digital questionnaire which automatically flagged participants who should be tested for either, or both, diseases. Rapid antigen-detecting tests (Ag-RDTs) for COVID-19 were conducted onsite, while sputum samples were collected and transported to laboratories for tuberculosis diagnosis. End-to-end patient data were captured using digital tools. 5663 participants enrolled in the study, 4946 of whom were tested for COVID-19. Ag-RDT positivity rate was 1% but fluctuated widely across counties in line with broader regional trends. Among a subset tested by PCR, positivity was greater in individuals flagged as high risk by the digital tool (8% compared with 4% overall). Of 355 participants tested for tuberculosis, 7 were positive, with the resulting prevalence rate higher than the national average. Over 40% of riders had elevated blood pressure or abnormal sugar levels. The digital tool successfully captured complete end-to-end data for 95% of all participants. This study revealed high rates of undetected disease among Bodaboda riders and demonstrated that integrated diagnosis can be delivered effectively in communities, with the support of digital tools, to maximize access.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Throughout history, the human race has often faced pandemics with substantial numbers of fatalities. As the COVID-19 pandemic has now affected the whole planet, even countries with moderate to strong healthcare support and expenditure have struggled to contain disease transmission and casualties. Countries affected by COVID-19 have different demographics, socioeconomic, and lifestyle health indicators. In this context, it is important to find out to what extent these parametric variations are modulating disease outcomes. To answer this, this study selected demographic, socioeconomic, and health indicators e.g., population density, percentage of the urban population, median age, health expenditure per capita, obesity, diabetes prevalence, alcohol intake, tobacco use, case fatality of non-communicable diseases (NCDs) as independent variables. Countries were grouped according to these variables and influence on dependent variables e.g., COVID-19 positive tests, case fatality, and case recovery rates were statistically analyzed. The results suggested that countries with variable median age had a significantly different outcome on positive test rate (P < 0.01). Both the median age (P = 0.0397) and health expenditure per capita (P = 0.0041) showed a positive relation with case recovery. An increasing number of tests per 100 K of the population showed a positive and negative relationship with the number of positives per 100 K population (P = 0.0001) and the percentage of positive tests (P < 0.0001), respectively. Alcohol intake per capita in liter (P = 0.0046), diabetes prevalence (P = 0.0389), and NCDs mortalities (P = 0.0477) also showed a statistical relation to the case fatality rate. Further analysis revealed that countries with high healthcare expenditure along with high median age and increased urban population showed more case fatality but also had a better recovery rate. Investment in the health sector alone is insufficient in controlling the severity of the pandemic. Intelligent and sustainable healthcare both in urban and rural settings and healthy lifestyle acquired immunity may reduce disease transmission and comorbidity induced fatalities, respectively.
In 2019, 83 percent of respondents from Israel said that had a favorable view of the United States. On the other hand, only 20 percent of respondents from Turkey said they had a favorable view of the U.S.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The global health crisis initiated by the COVID-19 pandemic triggered unparalleled economic upheavals. In this comprehensive study of 16 countries categorized by their infection rates, we scrutinize the impact of a range of variables on stock market indices and calculate four critical ratios derived from those variables. Our regression analyses reveal striking differences in how the variables influenced stock indices in countries with low and high infection rates. Notably, in countries with low infection rates, all variables exhibited significant effects on stock returns. An increase in infection numbers and fatalities correlated with greater stock market declines, underscoring the market’s sensitivity to the health and economic risks posed by the pandemic. Recovery and testing rates also displayed positive associations with stock returns, reflecting investor optimism concerning potential recovery scenarios. Conversely, nations grappling with high infection rates experienced notably weaker effects from these variables. Although fatalities had a negative impact on stock indices, other factors, including recoveries, infections, and testing rates, did not result in significant effects. This suggests the likelihood that markets in high-infection countries had likely factored pandemic conditions into their pricing, thereby reducing the immediate impact of these metrics on stock returns. Our findings underscore the intricacies of the COVID-19 pandemic’s impact on stock markets and highlight the importance of tailored strategies and policies for distinct country categories. This study offers valuable insights for policymakers and investors navigating financial markets during global health crises and preparing for future epidemics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The coronavirus disease 2019 (COVID-19) is a global health emergency of unprecedented proportions. Countries around the world have taken extraordinary steps to control the disease. The preventive measures face challenges in low and lower middle income countries (LICs and LMICs). Especially the marginalized communities, e.g., women are the hardest hit of the virus. This study took Bangladesh as a representative LMIC and aimed to determine the level of knowledge, perception, attitude, and preparedness related to COVID-19 among the adult women in the country. Using a comprehensive questionnaire, we channeled a cross-sectional study among adult women in Bangladesh. Participant's self-reported data on the knowledge, attitude, and preparedness were tabulated and analyzed using suitable statistical tools. A total of 1,869 adults from 61 districts of Bangladesh took part in this study. Ninety seven percentage of the participants claimed to have heard of COVID-19 before it arrived in Bangladesh. Regarding the general knowledge related to COVID-19's causal agent, symptoms, and treatment, the positive response rate was nearly 80%, with a mean of 10.68 ± 1.72. Younger and educated women had better knowledge levels compared to the older and lower-educated participants (p < 0.01). More efforts are required to educate women with older age and lower socioeconomic status. An overall positive attitude and perception were observed, although a significant proportion of the participants opined that the Government's efforts in controlling the outbreak were not adequate. Although the participants had a satisfactory level of knowledge and a positive attitude in adopting preventive measures against COVID-19, greater efforts are needed from the healthcare authorities and Government.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Europeans are largely satisfied with the role of the EU in ensuring access to COVID-19 vaccines and have positive attitude towards vaccines. The results of this survey confirm the positive trends evidenced in the first survey on Attitudes to Vaccination against Covid-19, conducted in May 2021.
Processed data files for the Eurobarometer surveys are published in .xlsx format.
For SPSS files and questionnaires, please contact GESIS - Leibniz Institute for the Social Sciences: https://www.gesis.org/eurobarometer
The objective of the survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance. The mode of data collection is face-to-face interviews.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The manufacturing and services sectors are the primary business sectors of interest. This corresponds to firms classified with International Standard Industrial Classification of All Economic Activities (ISIC) codes 15-37, 45, 50-52, 55, 60-64, and 72 (ISIC Rev.3.1). Formal (registered) companies with 5 or more employees are targeted for interview. Services firms include construction, retail, wholesale, hotels, restaurants, transport, storage, communications, and IT. Firms with 100% government/state ownership are not eligible to participate in an Enterprise Survey.
Sample survey data [ssd]
The sample for Hungary was selected using stratified random sampling. hree levels of stratification were used in this country: industry, establishment size, and oblast (region).
Industry stratification was designed in the way that follows: the universe was stratified into 23 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. Each sector had a target of 90 interviews.
Size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
Regional stratification was defined in three regions. These regions are Central Hungary, West Hungary and East Hungary.
Given the stratified design, sample frames containing a complete and updated list of establishments for the selected regions were required. Great efforts were made to obtain the best source for these listings. However, the quality of the sample frames was not optimal and, therefore, some adjustments were needed to correct for the presence of ineligible units. These adjustments are reflected in the weights computation.
For most countries covered in BEEPS IV, two sample frames were used. The first was supplied by the World Bank and consisted of enterprises interviewed in BEEPS 2005. The World Bank required that attempts should be made to re-interview establishments responding to the BEEPS 2005 survey where they were within the selected geographical regions and met eligibility criteria. That sample is referred to as the Panel. The second frame for Hungary was the Dun & Bradstreet database, which was considered the most reliable for the country. That frame was sent to the TNS statistical team in London to select the establishments for interviews.
The quality of the frame was assessed at the onset of the project. The frame proved to be useful though it showed positive rates of non-eligibility, repetition, non-existent units, etc. These problems are typical of establishment surveys, but given the impact these inaccuracies may have on the results, adjustments were needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of contacts to complete the survey was 4.6% (29 out of 630 establishments).
Face-to-face [f2f]
The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire
The “Core Questionnaire” is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments- the “Core Questionnaire + Manufacturing Module” and the “Core Questionnaire + Retail Module.” The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Complete information regarding the sampling methodology, sample frame, weights, response rates, and implementation can be found in the document "Description of Hungary Implementation 2009.pdf"
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Some neo-Malthusians regard fertility as being kept in check by scarcities and constraints and, conversely, as being raised by economic prosperity. Since out-migration to developed countries and the receipt of food aid from developed countries relax the constraints imposed by a country’s carrying capacity, both will have a positive effect on fertility rates in developing countries. Moreover, better economic prospects will also raise fertility, all other things equal. This article provides an empirical test of these hypotheses derived from a neo-Malthusian theory of fertility change. The results fail to confirm the theory and often contradict it.
This research was conducted in Ecuador between June and October 2010 as part of the Latin America and Caribbean (LAC) Enterprise Survey 2010, an initiative of the World Bank. Data from 366 establishments was analyzed.
The objective of the study is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through face-to-face interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The whole population, or the universe, covered in the Enterprise Surveys is the non-agricultural economy. It comprises: all manufacturing sectors according to the ISIC Revision 3.1 group classification (group D), construction sector (group F), services sector (groups G and H), and transport, storage, and communications sector (group I). Note that this population definition excludes the following sectors: financial intermediation (group J), real estate and renting activities (group K, except sub-sector 72, IT, which was added to the population under study), and all public or utilities sectors.
Sample survey data [ssd]
The study was conducted using stratified random sampling. Three levels of stratification were used in the sample: firm sector, firm size, and geographic region.
Industry stratification was designed in the way that follows: the universe was stratified into 1 manufacturing industry, 1 service industry -retail -, and 1 residual sector. The manufacturing industry, service industry, and residual sectors had a target each of 120 interviews.
Size stratification was defined following the standardized definition for the Enterprise Surveys: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
Regional stratification was defined in three locations (city and the surrounding business area): Pichincha, Guayas, and Azuay.
For Ecuador, two sample frames were used. The first was supplied by the World Bank and consists of enterprises interviewed in Ecuador 2006. The World Bank required that attempts should be made to re-interview establishments responding to the Ecuador 2006 survey where they were within the selected geographical locations and met eligibility criteria. That sample is referred to as the Panel. The second sample frame from the Official data base obtained from the Superintendence of Companies. A copy of that frames was sent to the TNS statistical team in London to select the establishments for interview.
The quality of the frame was assessed at the onset of the project through visits to a random subset of firms and local contractor knowledge. The sample frame was not immune from the typical problems found in establishment surveys: positive rates of non-eligibility, repetition, non-existent units, etc. In addition, the sample frame contains no telephone/fax numbers so the local contractor had to screen the contacts by visiting them. Due to response rate and ineligibility issues, additional sample had to be extracted by the World Bank in order to obtain enough eligible contacts and meet the sample targets.
Given the impact that non-eligible units included in the sample universe may have on the results, adjustments may be needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of sampled establishments contacted for the survey was 6.20% (59 out of 951 establishments).
Complete information regarding the sampling methodology, sample frame, weights, response rates, and implementation can be found in "Description of Ecuador Implementation" in "Technical documents" folder.
Face-to-face [f2f]
The current survey instruments are available: - Core Questionnaire + Manufacturing Module - Core Questionnaire + Retail Module - Core Questionnaire - Screener Questionnaire
The "Core Questionnaire" is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments - the "Core Questionnaire + Manufacturing Module" and the "Core Questionnaire + Retail Module." The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. The questionnaire also assesses the survey respondents' opinions on what are the obstacles to firm growth and performance.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
The number of realized interviews per contacted establishment was 0.38. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 0.39.
Complete information regarding the sampling methodology, sample frame, weights, response rates, and implementation can be found in "Description of Ecuador Implementation" in "Technical documents" folder.
The objective of the survey is to obtain feedback from enterprises in client countries on the state of the private sector as well as to help in building a panel of enterprise data that will make it possible to track changes in the business environment over time, thus allowing, for example, impact assessments of reforms. Through interviews with firms in the manufacturing and services sectors, the survey assesses the constraints to private sector growth and creates statistically significant business environment indicators that are comparable across countries.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance. The mode of data collection is face-to-face interviews.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must make its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
The manufacturing and services sectors are the primary business sectors of interest. This corresponds to firms classified with International Standard Industrial Classification of All Economic Activities (ISIC) codes 15-37, 45, 50-52, 55, 60-64, and 72 (ISIC Rev.3.1). Formal (registered) companies with 5 or more employees are targeted for interview. Services firms include construction, retail, wholesale, hotels, restaurants, transport, storage, communications, and IT. Firms with 100% government/state ownership are not eligible to participate in an Enterprise Survey.
Sample survey data [ssd]
The sample for Azerbaijan was selected using stratified random sampling. Three levels of stratification were used in this country: industry, establishment size, and oblast (region).
Industry stratification was designed in the way that follows: the universe was stratified into 23 manufacturing industries, 2 services industries -retail and IT-, and one residual sector. Each sector had a target of 90 interviews.
Size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
Regional stratification was defined in eight regions. These regions are Praha, Stredni Cechy, Jihozapad, Severozapad, Severovychod, Jihovychod, Stredni Morava, and Moravskoslezsko.
Given the stratified design, sample frames containing a complete and updated list of establishments for the selected regions were required. Great efforts were made to obtain the best source for these listings. However, the quality of the sample frames was not optimal and, therefore, some adjustments were needed to correct for the presence of ineligible units. These adjustments are reflected in the weights computation.
For most countries covered in BEEPS IV, two sample frames were used. The first was supplied by the World Bank and consisted of enterprises interviewed in BEEPS 2005. The World Bank required that attempts should be made to re-interview establishments responding to the BEEPS 2005 survey where they were within the selected geographical regions and met eligibility criteria. That sample is referred to as the Panel. The second frame for the Czech Republic was an official database known as Albertina data [Creditinfo Czech Republic], which is obtained from the complete Business Register [RES] of the Czech Statistical Office. An extract from that frame was sent to the TNS statistical team in London to select the establishments for interview.
The quality of the frame was assessed at the onset of the project. The frame proved to be useful though it showed positive rates of non-eligibility, repetition, non-existent units, etc. These problems are typical of establishment surveys, but given the impact these inaccuracies may have on the results, adjustments were needed when computing the appropriate weights for individual observations. The percentage of confirmed non-eligible units as a proportion of the total number of contacts to complete the survey was 28% (572 out of 2041 establishments).
Face-to-face [f2f]
The current survey instruments are available: - Core Questionnaire + Manufacturing Module [ISIC Rev.3.1: 15-37] - Core Questionnaire + Retail Module [ISIC Rev.3.1: 52] - Core Questionnaire [ISIC Rev.3.1: 45, 50, 51, 55, 60-64, 72] - Screener Questionnaire.
The “Core Questionnaire” is the heart of the Enterprise Survey and contains the survey questions asked of all firms across the world. There are also two other survey instruments- the “Core Questionnaire + Manufacturing Module” and the “Core Questionnaire + Retail Module.” The survey is fielded via three instruments in order to not ask questions that are irrelevant to specific types of firms, e.g. a question that relates to production and nonproduction workers should not be asked of a retail firm. In addition to questions that are asked across countries, all surveys are customized and contain country-specific questions. An example of customization would be including tourism-related questions that are asked in certain countries when tourism is an existing or potential sector of economic growth.
The standard Enterprise Survey topics include firm characteristics, gender participation, access to finance, annual sales, costs of inputs/labor, workforce composition, bribery, licensing, infrastructure, trade, crime, competition, capacity utilization, land and permits, taxation, informality, business-government relations, innovation and technology, and performance measures. Over 90% of the questions objectively ascertain characteristics of a country’s business environment. The remaining questions assess the survey respondents’ opinions on what are the obstacles to firm growth and performance.
Data entry and quality controls are implemented by the contractor and data is delivered to the World Bank in batches (typically 10%, 50% and 100%). These data deliveries are checked for logical consistency, out of range values, skip patterns, and duplicate entries. Problems are flagged by the World Bank and corrected by the implementing contractor through data checks, callbacks, and revisiting establishments.
Complete information regarding the sampling methodology, sample frame, weights, response rates, and implementation can be found in the document "Description of Czech Republic Implementation 2009.pdf"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Assessing the contribution of mobility declines to the control of Covid-19 diffusion is an urgent challenge of global import. We analyze the temporal correlation between transmission rates and societal mobility levels using daily mobility data from Google and Apple in an international panel of 99 countries during the period of March-December 2020. Reduced form regression estimates that flexibly control for time trends suggest that globally, a 10 percentage point reduction in mobility is associated with a 0.05–0.07 reduction in the value of the effective reproduction number, R(t). However, the strength of the association varies substantially across world regions and over time, being initially positive and strong in most world regions during the 2020 spring period, but becoming weaker over the summer, especially in Europe and Asia. We further find evidence that the strength of the association between mobility and transmission rates is reduced where facial coverings rules were implemented.
This statistic shows the share of people who believe NATO will have a positive global impact on the world over the next decade in 2019, by country. According to data published by IPSOS, 64 percent of respondents from Hungary felt that NATO will have a positive impact on the world over the next 10 years.
Out of the world's seven largest economies, the United Kingdom was the most negatively affected by the coronavirus (COVID-19) pandemic. During the third quarter of 2020, the GDP growth rate of the UK stood at minus 7.7 percent compared to the previous year. Furthermore, the GDPs of India and Japan were contracted by minus 5.3 percent. Only China experienced a positive GDP growth rate of 4.9 percent during that same period. However, in 2021, all the largest economies worldwide started to recover, with growth rates varying from 1.2 percent (Japan) to over nine percent (India).
A majority of the respondents in all 33 countries where the survey was conducted believed that the United Nations would have a positive impact on world affairs over the next decade. However, while over 80 percent had this opinion in India, Indonesia, and South Africa, less than 60 percent had the same in Turkey, Spain, and Japan.
According to a survey on global views on artificial intelligence (AI) in 2023, 53 percent of respondents from Thailand expected AI to have a positive impact on the job market of the country. Another 50 percent of respondents from Indonesia answered accordingly.
COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an