Facebook
Twitterhttps://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
5-Digit and 3-Digit ZIP Code data for Maptitude mapping software are from Caliper Corporation and contain boundaries and demographic data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All regional statistics at Eurostat refer to NUTS. However, some data collections use postcodes to reference the geographic location. Therefore, Eurostat has established a link between postcodes and NUTS level 3 codes in order to exploit information which originally is coded only by postcodes.
Various projects in Eurostat and other services of the Commission as well as the European Investment Bank have expressed their need for a link between postcodes and NUTS codes. The most important application at Eurostat is in transport statistics where the information is used to identify the flows of goods transport on roads. Another application is to geo-code address registers with the regional NUTS codes because postcodes are generally available as part of the address.
The TERCET NUTS-postal codes matching tables contain a lookup-list of European postal codes and their corresponding NUTS codes for the NUTS versions 2010, 2013, 2016 and 2021. There are matching tables for most of the EU, Candidate, EFTA and the United Kingdom. Eurostat has applied a number of quality assurance measures to ensure the best possible quality of the data including formatting checks, checks for completeness of postal codes and checks for spatial accuracy of the geocoding.
Additional tables containing distance matrixes for different modes of transport are provided.
Nevertheless, due to the very diverse and complex situation in Europe for postal codes data we cannot guarantee that all postal codes are included and have been correctly matched. Should you detect any errors, we would be grateful if you could notify them to us at ESTAT-USER-SUPPORT@ec.europa.eu. The matching tables have been created with data and tools that allow for their free and public distribution for statistical and other non-commercial purposes.
More information on quality assurance and data sources can be found in the methodological notes.
KNOWN ISSUES FOR NUTS (as of 15/07/2020) * Malta has only higher level Postal districts * Data for CY has gaps for NUTS 2021, GISCO is working on improving the coverage. * Data for Albania and Montenegro are missing, GISCO is looking into improving the coverage.
Facebook
Twitterhttps://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
ZIP Code business counts data for Maptitude mapping software are from Caliper Corporation and contain aggregated ZIP Code Business Patterns (ZBP) data and Rural-Urban Commuting Area (RUCA) data.
Facebook
TwitterThe 2005 First Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2005 First Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries. The files contain information distributed over a series of record types for the spatial objects of a county. There are 19 record types, including the basic data record, the shape coordinate points, and geographic codes that can be used with appropriate software to prepare maps. Other geographic information contained in the files includes attributes such as feature identifiers/census feature class codes (CFCC) used to differentiate feature types, address ranges and ZIP Codes, codes for legal and statistical entities, latitude/longitude coordinates of linear and point features, landmark point features, area landmarks, and area boundaries.
Facebook
TwitterThis dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population counts, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the Census 2021 ZCTA boundary file in a GIS system to produce maps for 40 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Facebook
Twitterhttps://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Business location data for Maptitude mapping software are from Caliper Corporation and contain point locations for businesses.
Facebook
TwitterThis dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2022 release in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 29 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains model-based ZIP Code Tabulation Area (ZCTA) level estimates for the PLACES 2021 release in GIS-friendly format. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population estimates, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS data because the relevant questions are only asked every other year in the BRFSS. These data can be joined with the census 2010 ZCTA boundary file in a GIS system to produce maps for 29 measures at the ZCTA level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=024cf3f6f59e49fe8c70e0e5410fe3cf
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the Zenodo archive for the manuscript "Likely community transmission of COVID-19 infections between neighboring, persistent hotspots in Ontario, Canada" (Mucaki EJ, Shirley BC and Rogan PK. F1000Research 2021, 10:1312, DOI: 10.12688/f1000research.75891.1). This study aimed to produce community-level geo-spatial mapping of patterns and clusters of symptoms, and of confirmed COVID-19 cases, in near real-time in order to support decision-making. This was accomplished by area-to-area geostatistical analysis, space-time integration, and spatial interpolation of COVID-19 positive individuals. This archive will contain data and image files from this study, which were too numerous to be included in the manuscript for this study. It also provides all program files pertaining to the Geostatistical Epidemiology Toolbox (Geostatistical analysis software package to be used in ArcGIS), as well as all other scripts described in this manuscript and other software developed (cluster, outlier, streak identification and pairing)..
We also provide a guide which provides a general description of the contents of the four sections in this archive (Documentation_for_Sections_of_Zenodo_Archive.docx). If you have any intent to utilize the data provided in Section 3, we greatly advise you to review this document as it describes the output of all geostatistical analyses performed in this study in detail.
Data Files:
Section 1. "Section_1.Tables_S1_S7.Figures_S1_S11.zip"
This section contains all additional tables and figures described in the manuscript "Likely community transmission of COVID-19 infections between neighboring, persistent hotspots in Ontario, Canada". Additional tables S1 to S7 are presented in an Excel document. These 7 tables provide summary statistics of various geostatistical tests described in the study (“Section 1 – Tables S1-S4”) and lists all identified single and paired high-case cluster streaks (“Section 1 – Tables S5-S7”). This section also contains 11 additional figures referred to in the manuscript (“Section 1 – Figures S1-S11”) both individually and within a Word document which describes them.
Section 2. "Section_2.Localized_Hotspot_Lists.zip"
All localized hotspots (identified through kriging analysis) were catalogued for each municipality evaluated (Hamilton, Kitchener/Waterloo, London, Ottawa, Toronto, Windsor/Essex). These files indicate the FSA in which the hotspot was identified, the date in which it was identified (utilizing 3-day case data at the postal code level), the amount of cases which occurred within the FSA within these 3 dates, the range of cases interpolated by kriging analysis (between 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-50, >50), and whether or not the FSA was deemed a hotspot by Gi* relative to the rest of Ontario on any of the three dates evaluated. Please see Section 4 for map images of these localized hotspots.
Section 3. "Section_3.All-Data_Files.Kriging_GiStar_Local_and_GlobalMorans.2020_2021"
Section 3 – All output files from the geostatistical tests performed in this study are provided in this section. This includes the output from Ontario-wide FSA-level Gi* and Cluster and Outlier analyses, and PC-level Cluster and Outlier, Spatial Autocorrelation, and kriging analysis of 6 municipal regions. It also includes kriging analysis of 7 other municipal regions adjacent to Toronto (Ajax, Brampton, Markham, Mississauga, Pickering, Richmond Hill and Vaughan). This section also provides data files from our analyses of stratified case data (by age, gender, and at-risk condition). All coordinates presented in these data files are given in “PCS_Lambert_Conformal_Conic” format. Case values between 1-5 were masked (appear as “NA”).
Section 4. "Section_4.All_Map_Images_of_Geostat_Analyses.zip"
Sets of image files which map the results of our geostatistical analyses onto a map of Ontario or within the municipalities evaluated (Hamilton, Kitchener/Waterloo, London, Ottawa, Toronto, Windsor/Essex) are provided. This includes: Kriging analysis (PC-level), Local Moran's I cluster and outlier analysis (FSA and PC-level), normal and space-time Gi* analysis, and all images for all analyses performed on stratified data (by age, gender and at-risk condition). Kriging contour maps are also included for 7 other municipal regions adjacent to Toronto (Ajax, Brampton, Markham, Mississauga, Pickering, Richmond Hill and Vaughan).
Software:
This Zenodo archive also provides all program files pertaining to the Geostatistical Epidemiology Toolbox (Geostatistical analysis software package to be used in ArcGIS), as well as all other scripts described in this manuscript. This geostatistical toolbox was developed by CytoGnomix Inc., London ON, Canada and is distributed freely under the terms of the GNU General Public License v3.0. It can be easily modified to accommodate other Canadian provinces and, with some additional effort, other countries.
This distribution of the Geostatistical Epidemiology Toolbox does not include postal code (PC) boundary files (which are required for some of the tools included in the toolbox). The PC boundary shapefiles used to test the toolbox were obtained from DMTI (https://www.dmtispatial.com/canmap/) through the Scholar's Geoportal at the University of Western Ontario (http://geo2.scholarsportal.info/). The distribution of these files (through sharing, sale, donation, transfer, or exchange) is strictly prohibited. However, any equivalent PC boundary shape file should suffice, provided it contains polygon boundaries representing postal code regions (see guide for more details).
Software File 1. "Software.GeostatisticalEpidemiologyToolbox.zip"
The Geostatistical Epidemiology Toolbox is a set of custom Python-based geoprocessing tools which function as any built-in tool in the ArcGIS system. This toolbox implements data preprocessing, geostatistical analysis and post-processing software developed to evaluate the distribution and progression of COVID-19 cases in Canada. The purpose of developing this toolbox is to allow external users without programming knowledge to utilize the software scripts which generated our analyses and was intended to be used to evaluate Canadian datasets. While the toolbox was developed for evaluating the distribution of COVID-19, it could be utilized for other purposes.
The toolbox was developed to evaluate statistically significant distributions of COVID-19 case data at Canadian Forward Sortation Area (FSA) and Postal Code-level in the province of Ontario utilizing geostatistical tools available through the ArcGIS system. These tools include: 1) Standard Gi* analysis (finds areas where cases are significantly spatially clustered), 2) spacetime based Gi* analysis (finds areas where cases are both spatially and temporally clustered), 3) cluster and outlier analysis (determines if high case regions are an regional outlier or part of a case cluster), 4) spatial autocorrelation (determines the cases in a region are clustered overall) and, 5) Empirical Bayesian Kriging analysis (creates contour maps which define the interpolation of COVID-19 cases in measured and unmeasured areas). Post-processing tools are included that import these all of the preceding results into the ArcGIS system and automatically generate PNG images.
This archive also includes a guide ("UserManual_GeostatisticalEpidemiologyToolbox_CytoGnomix.pdf") which describes in detail how to set up the toolbox, how to format input case data, and how to use each tool (describing both the relevant input parameters and the structure of the resultant output files).
Software File 2: “Software.Additional_Programs_for_Cluster_Outlier_Streak_Idendification_and_Pairing.zip"
In the manuscript associated with this archive, Perl scripts were utilized to evaluate postal code-level Cluster and Outlier analysis to identify significantly, highly clustered postal codes over consecutive periods (i.e., high-case cluster “streaks”). The identified streaks are then paired to those in close proximity, based on the neighbors of each postal code from PC centroid data ("paired streaks"). Multinomial logistic regression models were then derived in the R programming language to measure the correlation between the number of cases reported in each paired streak, the interval of time separating each streak, and the physical distance between the two postal codes. Here, we provide the 3 Perl scripts and the R markdown file which perform these tasks:
“Ontario_City_Closest_Postal_Code_Identification.pl”
Using an input file with postal code coordinates (by centroid), this program identifies the nearest neighbors to all postal codes for a given municipal region (the name of this region is entered on the command line). Postal code centroids were calculated in ArcGIS using the “Calculate Geometry” function against DMTI postal code boundary files (not provided). Input from other sources could be used, however, as long as the input includes a list of coordinates with a unique label associated with a particular municipality.
The output of this program (for the same municipal region being evaluated) is required for the following two Perl scripts:
“Local_Morans_Analysis.Recurrent_Clustered_PC_Identifier.pl”
This program uses the output of postal code-level Cluster and Outlier analysis for a municipality (these files are available in a second Zenodo archive: doi.org/10.5281/zenodo.5585812) and the output from “Ontario_City_Closest_Postal_Code_Identification.pl” (for the same municipal region) as input to identify high-case clustered postal codes that occur consecutively over a course of several dates (referred to as high-case cluster “streaks”). The script allows for a single day in which the PC was either not clustered or did not meet the minimum case count threshold of ≥ 6 cases within the 3-day sliding window (i.e. if
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Welcome to the Google Places Comprehensive Business Dataset! This dataset has been meticulously scraped from Google Maps and presents extensive information about businesses across several countries. Each entry in the dataset provides detailed insights into business operations, location specifics, customer interactions, and much more, making it an invaluable resource for data analysts and scientists looking to explore business trends, geographic data analysis, or consumer behaviour patterns.
This dataset is ideal for a variety of analytical projects, including: - Market Analysis: Understand business distribution and popularity across different regions. - Customer Sentiment Analysis: Explore relationships between customer ratings and business characteristics. - Temporal Trend Analysis: Analyze patterns of business activity throughout the week. - Geospatial Analysis: Integrate with mapping software to visualise business distribution or cluster businesses based on location.
The dataset contains 46 columns, providing a thorough profile for each listed business. Key columns include:
business_id: A unique Google Places identifier for each business, ensuring distinct entries.phone_number: The contact number associated with the business. It provides a direct means of communication.name: The official name of the business as listed on Google Maps.full_address: The complete postal address of the business, including locality and geographic details.latitude: The geographic latitude coordinate of the business location, useful for mapping and spatial analysis.longitude: The geographic longitude coordinate of the business location.review_count: The total number of reviews the business has received on Google Maps.rating: The average user rating out of 5 for the business, reflecting customer satisfaction.timezone: The world timezone the business is located in, important for temporal analysis.website: The official website URL of the business, providing further information and contact options.category: The category or type of service the business provides, such as restaurant, museum, etc.claim_status: Indicates whether the business listing has been claimed by the owner on Google Maps.plus_code: A sho...
Facebook
TwitterZIP Code boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
By Health [source]
This dataset presents a comprehensive look into the prevalence of asthma among Californian residents in terms of emergency department visits. Using age-adjusted rates and county FIPS codes, it offers an accurate snapshot of the prevalence rates per 10,000 people and provides key insights into how this condition affects certain age groups by ZIP Code. With its easy to use associated map view, this dataset allows users to quickly gain deeper knowledge about this important health issue and craft meaningful solutions to address it
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains counts and rates of asthma related emergency department visits by ZIP Code and age group in California. This data can be useful when doing research on asthma related trends or attempting to find correlations between environmental factors, prevalence of disease and geography.
- Select a year for analysis - the latest year for which data is available is the default selection, but other years are also listed in the dropdown menu.
- Select an Age Group to analyze - use the provided dropdown menus to select one or more age groups (all ages, 0-17, 18+) if you wish to analyze two different age groups in your analysis.
- Define a geographical area by selecting a ZIP code or County Fips code from which you wish to obtain your dataset from based on its availability or importance in your research question .
- View and download relevant data - after selecting all of the desired criteria (year,Age group(s), ZIP code/County FIPS Code) click “View Data” then “Download” at the bottom right corner of window that opens up
5 Analyze information found - use software such as Microsoft Excel or open source programs like Openoffice Calc to gain insight into your downloaded dataset through statistics calculations, graphs etc.. In particular look out for anomalies that could signify further investigation
- Identifying the geographic clusters of asthma sufferers by analyzing the rate of emergency department visits with geographic mapping.
- Developing outreach initiatives to areas with a high rate of ED visits for asthma to provide education, interventions and resources designed towards increasing preventive care and reducing preventable complications due to lack of access or knowledge about available services in these communities.
- Assessing disparities in ED visit rates for asthma between age groups as well as between urban and rural areas or different socio-economic groups within counties or ZIP codes in order to identify areas where there is a need for increased interventions, services and other resources related to asthma care in order to reduce the burden or severity of this chronic condition among particularly vulnerable population groups
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: Asthma_Emergency_Department_Visit_Rates_by_ZIP_Code.csv | Column name | Description | |:----------------------|:------------------------------------------------------------------------------------------------------------------| | Year | The year the data was collected. (Integer) | | ZIP code | The ZIP code of the area the data was collected from. (String...
Facebook
TwitterThe Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
Facebook
TwitterThis dataset takes the Environment Agency's Risk of Flooding from Rivers and Sea, and places English postcodes in their appropriate flood risk area, allowing you to look up flood risk from postcode.
Risk of Flooding from Rivers and Sea consists of geographical areas within England which are at risk of flooding from rivers and sea. Each area is assigned a flood risk within a banding:
Open Flood Risk by Postcode takes postcodes as point locations (from Open Postcode Geo) and places the postcode in the appropriate flood risk area. It is important to note that actual properties within a specific postcode may have a slightly different point location and therefore be in a different flood risk area. Generally speaking the point location of a postcode is the point location of the central property in that postcode.
For a full field list and explanations of values see the Open Flood Risk by Postcode documentation.
Open Flood Risk by Postcode is derived from two open datasets:
Both of these datasets are licensed under the OGL.
The following attribution statements are required:
The dataset is maintained by GetTheData.
The latest version and full documentation is available here.
Example application:
Lookup or drill down to individual English postcodes to see a map of that postcode and its flood risk, alongside surrounding postcodes and their flood risks:
Facebook
TwitterThis is the official Taxing Districts and Tax Code Area (TCA) map for the State of Idaho. This web mapping application includes a wide assortment of tools for taxing districts to view and research their district boundaries.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
5-Digit and 3-Digit ZIP Code data for Maptitude mapping software are from Caliper Corporation and contain boundaries and demographic data.