16 datasets found
  1. Data from: Meteogalicia PostgreSQL Database (2000 - 2018)

    • zenodo.org
    • portalinvestigacion.udc.gal
    bin
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose Vidal-Paz; Jose Vidal-Paz (2024). Meteogalicia PostgreSQL Database (2000 - 2018) [Dataset]. http://doi.org/10.5281/zenodo.11915325
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 9, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jose Vidal-Paz; Jose Vidal-Paz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database contains: rainfall, humidity, temperature, global solar radiation, wind velocity and wind direction ten-minute data from 150 stations of the Meteogalicia network between 1-jan-2000 and 31-dec-2018.

    Version installed: postgresql 9.1

    Extension installed: postgis 1.5.3-1

    Instructions to restore the database:

    1. Create template:

      createdb -E UTF8 -O postgres -U postgres template_postgis

    2. Activate PL/pgSQL language:

      createlang plpgsql -d template_postgis -U postgres

    3. Load definitions of PostGIS:

      psql -d template_postgis -U postgres -f /usr/share/postgresql/9.1/contrib/postgis-1.5/postgis.sql

      psql -d template_postgis -U postgres -f /usr/share/postgresql/9.1/contrib/postgis-1.5/spatial_ref_sys.sql

      psql -d template_postgis -U postgres -f /usr/share/postgresql/9.1/contrib/postgis_comments.sql

    4. Create database with "MeteoGalicia" name with PostGIS extension:

      createdb -U postgres -T template_postgis MeteoGalicia

    5. Restore backup:

      cat Meteogalicia* | psql MeteoGalicia

  2. n

    PostgreSQL

    • neuinfo.org
    • scicrunch.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). PostgreSQL [Dataset]. http://identifiers.org/RRID:SCR_021067
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Open source object relational database system that uses and extends SQL language combined with many features that safely store and scale the most complicated data workloads. PostgreSQL runs on all major operating systems.

  3. Most popular database management systems worldwide 2024

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most popular database management systems worldwide 2024 [Dataset]. https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2024
    Area covered
    Worldwide
    Description

    As of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of *******; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.

  4. Z

    Data from: Atlas of European Eel Distribution (Anguilla anguilla) in...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Beaulaton, Laurent (2024). Atlas of European Eel Distribution (Anguilla anguilla) in Portugal, Spain and France [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6021837
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zamora, Lluis
    Briand, Cédric
    Beaulaton, Laurent
    Korta, Maria
    Drouineau, Hilaire
    Pella, Herve
    Bardonnet, Agnès
    Mateo, Maria
    Amilhat, Elsa
    Díaz, Estibalitz
    Herrera, Mercedes
    Domingos, Isabel
    Fernández-Delgado, Carlos
    De Miguel Rubio, Ramon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France, Spain, Portugal
    Description

    DESCRIPTION

    VERSIONS

    version1.0.1 fixes problem with functions

    version1.0.2 added table dbeel_rivers.rn_rivermouth with GEREM basin, distance to Gibraltar and link to CCM.

    version1.0.3 fixes problem with functions

    version1.0.4 adds views rn_rna and rn_rne to the database

    The SUDOANG project aims at providing common tools to managers to support eel conservation in the SUDOE area (Spain, France and Portugal). VISUANG is the SUDOANG Interactive Web Application that host all these tools . The application consists of an eel distribution atlas (GT1), assessments of mortalities caused by turbines and an atlas showing obstacles to migration (GT2), estimates of recruitment and exploitation rate (GT3) and escapement (chosen as a target by the EC for the Eel Management Plans) (GT4). In addition, it includes an interactive map showing sampling results from the pilot basin network produced by GT6.

    The eel abundance for the eel atlas and escapement has been obtained using the Eel Density Analysis model (EDA, GT4's product). EDA extrapolates the abundance of eel in sampled river segments to other segments taking into account how the abundance, sex and size of the eels change depending on different parameters. Thus, EDA requires two main data sources: those related to the river characteristics and those related to eel abundance and characteristics.

    However, in both cases, data availability was uneven in the SUDOE area. In addition, this information was dispersed among several managers and in different formats due to different sampling sources: Water Framework Directive (WFD), Community Framework for the Collection, Management and Use of Data in the Fisheries Sector (EUMAP), Eel Management Plans, research groups, scientific papers and technical reports. Therefore, the first step towards having eel abundance estimations including the whole SUDOE area, was to have a joint river and eel database. In this report we will describe the database corresponding to the river’s characteristics in the SUDOE area and the eel abundances and their characteristics.

    In the case of rivers, two types of information has been collected:

    River topology (RN table): a compilation of data on rivers and their topological and hydrographic characteristics in the three countries.

    River attributes (RNA table): contains physical attributes that have fed the SUDOANG models.

    The estimation of eel abundance and characteristic (size, biomass, sex-ratio and silver) distribution at different scales (river segment, basin, Eel Management Unit (EMU), and country) in the SUDOE area obtained with the implementation of the EDA2.3 model has been compiled in the RNE table (eel predictions).

    CURRENT ACTIVE PROJECT

    The project is currently active here : gitlab forgemia

    TECHNICAL DESCRIPTION TO BUILD THE POSTGRES DATABASE

    1. Build the database in postgres.

    All tables are in ESPG:3035 (European LAEA). The format is postgreSQL database. You can download other formats (shapefiles, csv), here SUDOANG gt1 database.

    Initial command

    open a shell with command CMD

    Move to the place where you have downloaded the file using the following command

    cd c:/path/to/my/folder

    note psql must be accessible, in windows you can add the path to the postgres

    bin folder, otherwise you need to add the full path to the postgres bin folder see link to instructions below

    createdb -U postgres eda2.3 psql -U postgres eda2.3

    this will open a command with # where you can launch the commands in the next box

    Within the psql command

    create extension "postgis"; create extension "dblink"; create extension "ltree"; create extension "tablefunc"; create schema dbeel_rivers; create schema france; create schema spain; create schema portugal; -- type \q to quit the psql shell

    Now the database is ready to receive the differents dumps. The dump file are large. You might not need the part including unit basins or waterbodies. All the tables except waterbodies and unit basins are described in the Atlas. You might need to understand what is inheritance in a database. https://www.postgresql.org/docs/12/tutorial-inheritance.html

    1. RN (riversegments)

    These layers contain the topology (see Atlas for detail)

    dbeel_rivers.rn

    france.rn

    spain.rn

    portugal.rn

    Columns (see Atlas)

        gid
    
    
        idsegment
    
    
        source
    
    
        target
    
    
        lengthm
    
    
        nextdownidsegment
    
    
        path
    
    
        isfrontier
    
    
        issource
    
    
        seaidsegment
    
    
        issea
    
    
        geom
    
    
        isendoreic
    
    
        isinternational
    
    
        country
    

    dbeel_rivers.rn_rivermouth

        seaidsegment
    
    
        geom (polygon)
    
    
        gerem_zone_3
    
    
        gerem_zone_4 (used in EDA)
    
    
        gerem_zone_5
    
    
        ccm_wso_id
    
    
        country
    
    
        emu_name_short
    
    
        geom_outlet (point)
    
    
        name_basin
    
    
        dist_from_gibraltar_km
    
    
        name_coast
    
    
        basin_name
    

    dbeel_rivers.rn ! mandatory => table at the international level from which

    the other table inherit

    even if you don't want to use other countries

    (In many cases you should ... there are transboundary catchments) download this first.

    the rn network must be restored firt !

    table rne and rna refer to it by foreign keys.

    pg_restore -U postgres -d eda2.3 "dbeel_rivers.rn.backup"

    france

    pg_restore -U postgres -d eda2.3 "france.rn.backup"

    spain

    pg_restore -U postgres -d eda2.3 "spain.rn.backup"

    portugal

    pg_restore -U postgres -d eda2.3 "portugal.rn.backup"

    rivermouth and basins, this file contains GEREM basins, distance to Gibraltar, the link to CCM id

    for each basin flowing to the sea. pg_restore -U postgres -d eda2.3 "dbeel_rivers.rn_rivermouth.backup"

    with the schema you will probably want to be able to use the functions, but launch this only after

    restoring rna in the next step

    psql -U postgres -d eda2.3 -f "function_dbeel_rivers.sql"

    1. RNA (Attributes)

    This corresponds to tables

    dbeel_rivers.rna

    france.rna

    spain.rna

    portugal.rna

    Columns (See Atlas)

        idsegment
    
    
        altitudem
    
    
        distanceseam
    
    
        distancesourcem
    
    
        cumnbdam
    
    
        medianflowm3ps
    
    
        surfaceunitbvm2
    
    
        surfacebvm2
    
    
        strahler
    
    
        shreeve
    
    
        codesea
    
    
        name
    
    
        pfafriver
    
    
        pfafsegment
    
    
        basin
    
    
        riverwidthm
    
    
        temperature
    
    
        temperaturejan
    
    
        temperaturejul
    
    
        wettedsurfacem2
    
    
        wettedsurfaceotherm2
    
    
        lengthriverm
    
    
        emu
    
    
        cumheightdam
    
    
        riverwidthmsource
    
    
        slope
    
    
        dis_m3_pyr_riveratlas
    
    
        dis_m3_pmn_riveratlas
    
    
        dis_m3_pmx_riveratlas
    
    
        drought
    
    
        drought_type_calc
    

    Code :

    pg_restore -U postgres -d eda2.3 "dbeel_rivers.rna.backup" pg_restore -U postgres -d eda2.3 "france.rna.backup" pg_restore -U postgres -d eda2.3 "spain.rna.backup"
    pg_restore -U postgres -d eda2.3 "portugal.rna.backup"

    1. RNE (eel predictions)

    These layers contain eel data (see Atlas for detail)

    dbeel_rivers.rne

    france.rne

    spain.rne

    portugal.rne

    Columns (see Atlas)

        idsegment
    
    
        surfaceunitbvm2
    
    
        surfacebvm2
    
    
        delta
    
    
        gamma
    
    
        density
    
    
        neel
    
    
        beel
    
    
        peel150
    
    
        peel150300
    
    
        peel300450
    
    
        peel450600
    
    
        peel600750
    
    
        peel750
    
    
        nsilver
    
    
        bsilver
    
    
        psilver150300
    
    
        psilver300450
    
    
        psilver450600
    
    
        psilver600750
    
    
        psilver750
    
    
        psilver
    
    
        pmale150300
    
    
        pmale300450
    
    
        pmale450600
    
    
        pfemale300450
    
    
        pfemale450600
    
    
        pfemale600750
    
    
        pfemale750
    
    
        pmale
    
    
        pfemale
    
    
        sex_ratio
    
    
        cnfemale300450
    
    
        cnfemale450600
    
    
        cnfemale600750
    
    
        cnfemale750
    
    
        cnmale150300
    
    
        cnmale300450
    
    
        cnmale450600
    
    
        cnsilver150300
    
    
        cnsilver300450
    
    
        cnsilver450600
    
    
        cnsilver600750
    
    
        cnsilver750
    
    
        cnsilver
    
    
        delta_tr
    
    
        gamma_tr
    
    
        type_fit_delta_tr
    
    
        type_fit_gamma_tr
    
    
        density_tr
    
    
        density_pmax_tr
    
    
        neel_pmax_tr
    
    
        nsilver_pmax_tr
    
    
        density_wd
    
    
        neel_wd
    
    
        beel_wd
    
    
        nsilver_wd
    
    
        bsilver_wd
    
    
        sector_tr
    
    
        year_tr
    
    
        is_current_distribution_area
    
    
        is_pristine_distribution_area_1985
    

    Code for restauration

    pg_restore -U postgres -d eda2.3 "dbeel_rivers.rne.backup" pg_restore -U postgres -d eda2.3 "france.rne.backup" pg_restore -U postgres -d eda2.3 "spain.rne.backup"
    pg_restore -U postgres -d eda2.3 "portugal.rne.backup"

    1. Unit basins

    Units basins are not described in the Altas. They correspond to the following tables :

    dbeel_rivers.basinunit_bu

    france.basinunit_bu

    spain.basinunit_bu

    portugal.basinunit_bu

    france.basinunitout_buo

    spain.basinunitout_buo

    portugal.basinunitout_buo

    The unit basins is the simple basin that surrounds a segment. It correspond to the topography unit from which unit segment have been calculated. ESPG 3035. Tables bu_unitbv, and bu_unitbvout inherit from dbeel_rivers.unit_bv. The first table intersects with a segment, the second table does not, it corresponds to basin polygons which do not have a riversegment.

    Source :

    Portugal

    https://sniambgeoviewer.apambiente.pt/Geodocs/gml/inspire/HY_PhysicalWaters_DrainageBasinGeoCod.ziphttps://sniambgeoviewer.apambiente.pt/Geodocs/gml/inspire/HY_PhysicalWaters_DrainageBasinGeoCod.zip

    France

    In france unit bv corresponds to the RHT (Pella et al., 2012)

    Spain

    http://www.mapama.gob.es/ide/metadatos/index.html?srv=metadata.show&uuid=898f0ff8-f06c-4c14-88f7-43ea90e48233

    pg_restore -U postgres -d eda2.3 'dbeel_rivers.basinunit_bu.backup'

    france

    pg_restore -U postgres -d eda2.3

  5. d

    PostgreSQL Dump of IMDB Data for JOB Workload

    • search.dataone.org
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcus, Ryan (2023). PostgreSQL Dump of IMDB Data for JOB Workload [Dataset]. http://doi.org/10.7910/DVN/2QYZBT
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Marcus, Ryan
    Description

    This is a dump generated by pg_dump -Fc of the IMDb data used in the "How Good are Query Optimizers, Really?" paper. PostgreSQL compatible SQL queries and scripts to automatically create a VM with this dataset can be found here: https://git.io/imdb

  6. SQL Databases for Students and Educators

    • zenodo.org
    • data.niaid.nih.gov
    bin, html
    Updated Oct 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mauricio Vargas Sepúlveda; Mauricio Vargas Sepúlveda (2020). SQL Databases for Students and Educators [Dataset]. http://doi.org/10.5281/zenodo.4136985
    Explore at:
    bin, htmlAvailable download formats
    Dataset updated
    Oct 28, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Mauricio Vargas Sepúlveda; Mauricio Vargas Sepúlveda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Publicly accessible databases often impose query limits or require registration. Even when I maintain public and limit-free APIs, I never wanted to host a public database because I tend to think that the connection strings are a problem for the user.

    I’ve decided to host different light/medium size by using PostgreSQL, MySQL and SQL Server backends (in strict descending order of preference!).

    Why 3 database backends? I think there are a ton of small edge cases when moving between DB back ends and so testing lots with live databases is quite valuable. With this resource you can benchmark speed, compression, and DDL types.

    Please send me a tweet if you need the connection strings for your lectures or workshops. My Twitter username is @pachamaltese. See the SQL dumps on each section to have the data locally.

  7. Papyrus dataset postgres dump

    • zenodo.org
    • data.niaid.nih.gov
    tar
    Updated Jul 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rachael Skyner; Ben Tehan; Rachael Skyner; Ben Tehan (2022). Papyrus dataset postgres dump [Dataset]. http://doi.org/10.5281/zenodo.6866697
    Explore at:
    tarAvailable download formats
    Dataset updated
    Jul 21, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rachael Skyner; Ben Tehan; Rachael Skyner; Ben Tehan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset that the database dump was created from is described here: 10.33774/chemrxiv-2021-1rxhk

    A dump of the postgres database created from the code in the 'postgres' directory (Papyrus-scripts/src/papyrus_scripts/postgres/) of Rachael Skyner's fork (https://github.com/reskyner/Papyrus-scripts) of Oliver Bequignon's Papyrus-scripts github (https://github.com/OlivierBeq/Papyrus-scripts). The database was created by:

    1. Download the papyrus csv files from Oliver's code using the download functionality

    2. Spin up a 'papyrus' container using the docker-compose.yml file in Rachael's fork (running on a machine with access to the postgres instance you want to add the database to)

    3. Start a shell in the papyrus container with docker exec -it papyrus /bin/bash

    4. Start a jupyter notebook server with jupyter notebook --ip 0.0.0.0 --allow-root --no-browser

    5. Run the two notebooks (1-insert_molecule_data.ipynb and 2-insert_activities.ipynb) in order

    6. Create a dump of the database

  8. Most commonly used database technologies among developers worldwide 2023

    • statista.com
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most commonly used database technologies among developers worldwide 2023 [Dataset]. https://www.statista.com/statistics/794187/united-states-developer-survey-most-wanted-used-database-technologies/
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 8, 2023 - May 19, 2023
    Area covered
    Worldwide
    Description

    In 2023, over ** percent of surveyed software developers worldwide reported using PostgreSQL, the highest share of any database technology. Other popular database tools among developers included MySQL and SQLite.

  9. Dataset of A Large-scale Study about Quality and Reproducibility of Jupyter...

    • zenodo.org
    • explore.openaire.eu
    bz2
    Updated Mar 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    João Felipe; João Felipe; Leonardo; Leonardo; Vanessa; Vanessa; Juliana; Juliana (2021). Dataset of A Large-scale Study about Quality and Reproducibility of Jupyter Notebooks [Dataset]. http://doi.org/10.5281/zenodo.2592524
    Explore at:
    bz2Available download formats
    Dataset updated
    Mar 15, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    João Felipe; João Felipe; Leonardo; Leonardo; Vanessa; Vanessa; Juliana; Juliana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.

    Paper: https://2019.msrconf.org/event/msr-2019-papers-a-large-scale-study-about-quality-and-reproducibility-of-jupyter-notebooks

    This repository contains two files:

    • dump.tar.bz2
    • jupyter_reproducibility.tar.bz2

    The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.

    The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:

    • analyses: this folder has all the notebooks we use to analyze the data in the PostgreSQL database.
    • archaeology: this folder has all the scripts we use to query, download, and extract data from GitHub notebooks.
    • paper: empty. The notebook analyses/N12.To.Paper.ipynb moves data to it

    In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.

    Reproducing the Analysis

    This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:

    Ubuntu 18.04.1 LTS
    PostgreSQL 10.6
    Conda 4.5.11
    Python 3.7.2
    PdfCrop 2012/11/02 v1.38

    First, download dump.tar.bz2 and extract it:

    tar -xjf dump.tar.bz2

    It extracts the file db2019-03-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:

    psql jupyter < db2019-03-13.dump

    It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:

    export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";

    Download and extract jupyter_reproducibility.tar.bz2:

    tar -xjf jupyter_reproducibility.tar.bz2

    Create a conda environment with Python 3.7:

    conda create -n analyses python=3.7
    conda activate analyses

    Go to the analyses folder and install all the dependencies of the requirements.txt

    cd jupyter_reproducibility/analyses
    pip install -r requirements.txt

    For reproducing the analyses, run jupyter on this folder:

    jupyter notebook

    Execute the notebooks on this order:

    • Index.ipynb
    • N0.Repository.ipynb
    • N1.Skip.Notebook.ipynb
    • N2.Notebook.ipynb
    • N3.Cell.ipynb
    • N4.Features.ipynb
    • N5.Modules.ipynb
    • N6.AST.ipynb
    • N7.Name.ipynb
    • N8.Execution.ipynb
    • N9.Cell.Execution.Order.ipynb
    • N10.Markdown.ipynb
    • N11.Repository.With.Notebook.Restriction.ipynb
    • N12.To.Paper.ipynb

    Reproducing or Expanding the Collection

    The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.

    Requirements

    This time, we have extra requirements:

    All the analysis requirements
    lbzip2 2.5
    gcc 7.3.0
    Github account
    Gmail account

    Environment

    First, set the following environment variables:

    export JUP_MACHINE="db"; # machine identifier
    export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
    export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
    export JUP_COMPRESSION="lbzip2"; # compression program
    export JUP_VERBOSE="5"; # verbose level
    export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
    export JUP_GITHUB_USERNAME="github_username"; # your github username
    export JUP_GITHUB_PASSWORD="github_password"; # your github password
    export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
    export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
    export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
    export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
    export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
    export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
    export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
    export JUP_WITH_EXECUTION="1"; # run execute python notebooks
    export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
    export JUP_EXECUTION_MODE="-1"; # run following the execution order
    export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
    export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
    export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
    export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
    export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
    
    
    # Frequenci of log report
    export JUP_ASTROID_FREQUENCY="5";
    export JUP_IPYTHON_FREQUENCY="5";
    export JUP_NOTEBOOKS_FREQUENCY="5";
    export JUP_REQUIREMENT_FREQUENCY="5";
    export JUP_CRAWLER_FREQUENCY="1";
    export JUP_CLONE_FREQUENCY="1";
    export JUP_COMPRESS_FREQUENCY="5";
    
    export JUP_DB_IP="localhost"; # postgres database IP

    Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf

    Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.

    Scripts

    Download and extract jupyter_reproducibility.tar.bz2:

    tar -xjf jupyter_reproducibility.tar.bz2

    Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):

    Conda 2.7

    conda create -n raw27 python=2.7 -y
    conda activate raw27
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Anaconda 2.7

    conda create -n py27 python=2.7 anaconda -y
    conda activate py27
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology
    

    Conda 3.4

    It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.

    conda create -n raw34 python=3.4 -y
    conda activate raw34
    conda install jupyter -c conda-forge -y
    conda uninstall jupyter -y
    pip install --upgrade pip
    pip install jupyter
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology
    pip install pathlib2

    Anaconda 3.4

    conda create -n py34 python=3.4 anaconda -y
    conda activate py34
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Conda 3.5

    conda create -n raw35 python=3.5 -y
    conda activate raw35
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Anaconda 3.5

    It requires the manual installation of other anaconda packages.

    conda create -n py35 python=3.5 anaconda -y
    conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
    conda activate py35
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Conda 3.6

    conda create -n raw36 python=3.6 -y
    conda activate raw36
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Anaconda 3.6

    conda create -n py36 python=3.6 anaconda -y
    conda activate py36
    conda install -y anaconda-navigator jupyterlab_server navigator-updater
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Conda 3.7

    <code

  10. Reproducibility in Practice: Dataset of a Large-Scale Study of Jupyter...

    • zenodo.org
    bz2
    Updated Mar 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous; Anonymous (2021). Reproducibility in Practice: Dataset of a Large-Scale Study of Jupyter Notebooks [Dataset]. http://doi.org/10.5281/zenodo.2538877
    Explore at:
    bz2Available download formats
    Dataset updated
    Mar 15, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous; Anonymous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.

    This repository contains two files:

    • dump.tar.bz2
    • jupyter_reproducibility.tar.bz2

    The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.

    The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:

    • analyses: this folder has all the notebooks we use to analyze the data in the PostgreSQL database.
    • archaeology: this folder has all the scripts we use to query, download, and extract data from GitHub notebooks.
    • paper: empty. The notebook analyses/N11.To.Paper.ipynb moves data to it

    In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.

    Reproducing the Analysis

    This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:

    Ubuntu 18.04.1 LTS
    PostgreSQL 10.6
    Conda 4.5.1
    Python 3.6.8
    PdfCrop 2012/11/02 v1.38

    First, download dump.tar.bz2 and extract it:

    tar -xjf dump.tar.bz2

    It extracts the file db2019-01-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:

    psql jupyter < db2019-01-13.dump

    It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:

    export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";

    Download and extract jupyter_reproducibility.tar.bz2:

    tar -xjf jupyter_reproducibility.tar.bz2

    Create a conda environment with Python 3.6:

    conda create -n py36 python=3.6

    Go to the analyses folder and install all the dependencies of the requirements.txt

    cd jupyter_reproducibility/analyses
    pip install -r requirements.txt

    For reproducing the analyses, run jupyter on this folder:

    jupyter notebook

    Execute the notebooks on this order:

    • N0.Index.ipynb
    • N1.Repository.ipynb
    • N2.Notebook.ipynb
    • N3.Cell.ipynb
    • N4.Features.ipynb
    • N5.Modules.ipynb
    • N6.AST.ipynb
    • N7.Name.ipynb
    • N8.Execution.ipynb
    • N9.Cell.Execution.Order.ipynb
    • N10.Markdown.ipynb
    • N11.To.Paper.ipynb

    Reproducing or Expanding the Collection

    The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.

    Requirements

    This time, we have extra requirements:

    All the analysis requirements
    lbzip2 2.5
    gcc 7.3.0
    Github account
    Gmail account

    Environment

    First, set the following environment variables:

    export JUP_MACHINE="db"; # machine identifier
    export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
    export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
    export JUP_COMPRESSION="lbzip2"; # compression program
    export JUP_VERBOSE="5"; # verbose level
    export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
    export JUP_GITHUB_USERNAME="github_username"; # your github username
    export JUP_GITHUB_PASSWORD="github_password"; # your github password
    export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
    export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
    export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
    export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
    export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
    export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
    export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
    export JUP_WITH_EXECUTION="1"; # run execute python notebooks
    export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
    export JUP_EXECUTION_MODE="-1"; # run following the execution order
    export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
    export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
    export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
    export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
    export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
    
    
    # Frequenci of log report
    export JUP_ASTROID_FREQUENCY="5";
    export JUP_IPYTHON_FREQUENCY="5";
    export JUP_NOTEBOOKS_FREQUENCY="5";
    export JUP_REQUIREMENT_FREQUENCY="5";
    export JUP_CRAWLER_FREQUENCY="1";
    export JUP_CLONE_FREQUENCY="1";
    export JUP_COMPRESS_FREQUENCY="5";
    
    export JUP_DB_IP="localhost"; # postgres database IP

    Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf

    Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.

    Scripts

    Download and extract jupyter_reproducibility.tar.bz2:

    tar -xjf jupyter_reproducibility.tar.bz2

    Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):

    Conda 2.7

    conda create -n raw27 python=2.7 -y
    conda activate raw27
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Anaconda 2.7

    conda create -n py27 python=2.7 anaconda -y
    conda activate py27
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology
    

    Conda 3.4

    It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.

    conda create -n raw34 python=3.4 -y
    conda activate raw34
    conda install jupyter -c conda-forge -y
    conda uninstall jupyter -y
    pip install --upgrade pip
    pip install jupyter
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology
    pip install pathlib2

    Anaconda 3.4

    conda create -n py34 python=3.4 anaconda -y
    conda activate py34
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Conda 3.5

    conda create -n raw35 python=3.5 -y
    conda activate raw35
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Anaconda 3.5

    It requires the manual installation of other anaconda packages.

    conda create -n py35 python=3.5 anaconda -y
    conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
    conda activate py35
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Conda 3.6

    conda create -n raw36 python=3.6 -y
    conda activate raw36
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Anaconda 3.6

    conda create -n py36 python=3.6 anaconda -y
    conda activate py36
    conda install -y anaconda-navigator jupyterlab_server navigator-updater
    pip install --upgrade pip
    pip install pipenv
    pip install -e jupyter_reproducibility/archaeology

    Conda 3.7

    conda create -n raw37 python=3.7 -y
    conda activate raw37
    pip install --upgrade pip
    pip install pipenv
    pip install -e

  11. c

    ckanext-jsondatastore

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-jsondatastore [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-jsondatastore
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The jsondatastore extension for CKAN is designed as a proof-of-concept for utilizing the Postgres JSONB data type within CKAN's datastore. This extension allows storing JSON data natively within a Postgres database, potentially offering advantages in terms of data storage and retrieval flexibility. Importantly, the readme explicitly states that this is not intended for actual use in its current state. Key Features: Postgres JSONB Integration: Leverages the Postgres JSONB data type for storing JSON data. This facilitates flexible schema management and efficient querying of JSON data directly within the database. Proof-of-Concept Implementation: Demonstrates the feasibility of using JSONB within the CKAN datastore. The intention is primarily experimental rather than production-ready. SQLAlchemy Compatibility: Requires SQLAlchemy version 0.9.7, hinting at potential compatibility with CKAN's ORM for seamless integration with database operations. Technical Integration: The extension integrates with CKAN by enabling the jsondatastore plugin in the CKAN configuration file (ckan.plugins). This suggests it modifies or extends CKAN's datastore functionality to handle JSON data using Postgres JSONB storage. The extension also introduces dependencies on SQLAlchemy 0.9.7 and Postgres 9.4. Benefits & Impact: While described as a proof-of-concept and not production ready, the extension demonstrates a possible avenue for CKAN to leverage JSONB, which leads to a more flexible storage solution within CKAN's datastore. In the future, this approach could allow users to store and query semi-structured data more easily. The JSONB type generally provides advantages in terms of querying and indexing JSON data compared to storing JSON as plain text.

  12. e

    Eolicos Parks

    • data.europa.eu
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eolicos Parks [Dataset]. https://data.europa.eu/data/datasets/1451ff3c-feb9-4d6e-9d20-aa28deff3219/
    Explore at:
    Description

    Layer containing the location of wind farms in Andalusia. The data is updated every six months. The data is stored in a spatial Postgres database maintained by the Andalusian Energy Agency. The information is published on the WMS and WFS web services.

  13. Z

    Data from: International authorship and collaboration across bioRxiv...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard J. Abdill (2024). Data from: International authorship and collaboration across bioRxiv preprints [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3762814
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Richard J. Abdill
    Elizabeth M. Adamowicz
    Ran Blekhman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data and supplementary tables for "International authorship and collaboration across bioRxiv preprints," a paper first posted to bioRxiv and now published in eLife.

    "reproduce.md" includes all R code used to generate figures and perform analyses described in the paper.

    "biorxiv_countries.postgres.backup" is a database snapshot that can be loaded into a PostgreSQL database to access all data collected and used in the study.

    "schema.pdf" describes each field in each table of the database.

    "manual_edits.sql" describes all corrections made to the automated inference of the country-level affiliations inferred for all authors.

    "affiliation_corrections.csv" lists every unique affiliation string that was re-categorized after institutional corrections. The consequences of the corrections described in "manual_edits.sql."

    "institution_corrections_summary.csv" summarizes "affiliation_corrections.csv" by listing each "before" and "after" correction one time. It is important to note that each before/after pair does not necessarily indicate that every affiliation string from the "before" institution was reassigned to the "after" institution, just that at least one affiliation string was switched from one to the other.

    Note that the final two "corrections" files describe steps taken to correct the institution-level associations between authors and countries. The final set of corrections assigned authors to countries using heuristics that did not take institution-level accuracy into account.

    Version history:

    1.0.0: New files uploaded reflecting substantial corrections to the data, mostly linked to classification of authors and preprints previously without a country classification. (26 Jun 2020)

    0.2.1: Added "schema.pdf" file, previously only in the manuscript.

    0.2.0: Added new files "affiliation_corrections.csv" and "institution_corrections_summary.csv"

    0.1.1: Database snapshot added.

    0.1.0: First version with supplementary tables added.

  14. u

    Proximity to Water Bodies (DMTI CanMap documentation) - 1 - Catalogue -...

    • data.urbandatacentre.ca
    • beta.data.urbandatacentre.ca
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Proximity to Water Bodies (DMTI CanMap documentation) - 1 - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/proximity-to-water-bodies-dmti-canmap-documentation-1
    Explore at:
    Dataset updated
    Sep 18, 2023
    Description

    Hydrology files from DMTI Spatial Inc. CanMap Content Suite for 2018 (water bodies, water lines) were downloaded via the University of Victoria library, and loaded into a PostGRES database. Specifically for distance to oceans, we used the 2011 Hydrographic Layers - coast GIS file from Statistics Canada. Distances in metres to the nearest water feature within 5 kilometres by class (defined below) was calculated using PostGRES, for all DMTI Spatial Inc. single-link postal code for all years. This assumes that water features have remained constant over time. Note: many waterbodies in Alberta were coded as unknown in the water_defn column. Any features that were otherwise coded as permanent and had a river name or lake name were re-coded as watercourse and lake respectively and added to the appropriate class prior to calculation. NOTE: Features from the DMTI waterbody file are large enough to be representing as polygons or rivers/channels with right and left banks delineated. Features from the DMTI waterline file are narrow enough that they are only represented as a single line feature, rather than having a right and left bank.

  15. d

    gnaf-loader

    • data.gov.au
    Updated Aug 21, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). gnaf-loader [Dataset]. https://data.gov.au/dataset/7863c61a-a46f-4441-a1c6-97c516012aac
    Explore at:
    Dataset updated
    Aug 21, 2016
    Description

    A Python script for quickly loading the complete G-NAF and PSMA Administrative Boundaries into Postgres, simplified and ready to use as reference data for address validation, geocoding, analysis and …Show full descriptionA Python script for quickly loading the complete G-NAF and PSMA Administrative Boundaries into Postgres, simplified and ready to use as reference data for address validation, geocoding, analysis and visualisation. It also customises G-NAF and the Admin Bdys to remove some of the known, minor limitations of the data.

  16. s

    Groundtruthing points for the Falkland Islands fine scale habitat map...

    • dataportal.saeri.org
    Updated Jan 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Groundtruthing points for the Falkland Islands fine scale habitat map collected using ODK app on smartphones [Dataset]. https://dataportal.saeri.org/dataset/groundtruthing-points-for-the-falkland-islands-fine-scale-habitat-map-collected-using-odk-app-on-sma
    Explore at:
    Dataset updated
    Jan 30, 2020
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Falkland Islands (Islas Malvinas)
    Description

    The dataset is a geojson file wich includes points used for validating the fine-scale habitat map for the Falkland Islands. Points were collected using mobile devices through a customised Open Data Kit form. The app was used between 2018 & 2019 and data were collected at various locations by various personnel. The data were then exported from postgres database to a geojson file.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jose Vidal-Paz; Jose Vidal-Paz (2024). Meteogalicia PostgreSQL Database (2000 - 2018) [Dataset]. http://doi.org/10.5281/zenodo.11915325
Organization logo

Data from: Meteogalicia PostgreSQL Database (2000 - 2018)

Related Article
Explore at:
binAvailable download formats
Dataset updated
Sep 9, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Jose Vidal-Paz; Jose Vidal-Paz
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This database contains: rainfall, humidity, temperature, global solar radiation, wind velocity and wind direction ten-minute data from 150 stations of the Meteogalicia network between 1-jan-2000 and 31-dec-2018.

Version installed: postgresql 9.1

Extension installed: postgis 1.5.3-1

Instructions to restore the database:

  1. Create template:

    createdb -E UTF8 -O postgres -U postgres template_postgis

  2. Activate PL/pgSQL language:

    createlang plpgsql -d template_postgis -U postgres

  3. Load definitions of PostGIS:

    psql -d template_postgis -U postgres -f /usr/share/postgresql/9.1/contrib/postgis-1.5/postgis.sql

    psql -d template_postgis -U postgres -f /usr/share/postgresql/9.1/contrib/postgis-1.5/spatial_ref_sys.sql

    psql -d template_postgis -U postgres -f /usr/share/postgresql/9.1/contrib/postgis_comments.sql

  4. Create database with "MeteoGalicia" name with PostGIS extension:

    createdb -U postgres -T template_postgis MeteoGalicia

  5. Restore backup:

    cat Meteogalicia* | psql MeteoGalicia

Search
Clear search
Close search
Google apps
Main menu