Facebook
TwitterOpen source object relational database system that uses and extends SQL language combined with many features that safely store and scale the most complicated data workloads. PostgreSQL runs on all major operating systems.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DESCRIPTION
VERSIONS
version1.0.1 fixes problem with functions
version1.0.2 added table dbeel_rivers.rn_rivermouth with GEREM basin, distance to Gibraltar and link to CCM.
version1.0.3 fixes problem with functions
version1.0.4 adds views rn_rna and rn_rne to the database
The SUDOANG project aims at providing common tools to managers to support eel conservation in the SUDOE area (Spain, France and Portugal). VISUANG is the SUDOANG Interactive Web Application that host all these tools . The application consists of an eel distribution atlas (GT1), assessments of mortalities caused by turbines and an atlas showing obstacles to migration (GT2), estimates of recruitment and exploitation rate (GT3) and escapement (chosen as a target by the EC for the Eel Management Plans) (GT4). In addition, it includes an interactive map showing sampling results from the pilot basin network produced by GT6.
The eel abundance for the eel atlas and escapement has been obtained using the Eel Density Analysis model (EDA, GT4's product). EDA extrapolates the abundance of eel in sampled river segments to other segments taking into account how the abundance, sex and size of the eels change depending on different parameters. Thus, EDA requires two main data sources: those related to the river characteristics and those related to eel abundance and characteristics.
However, in both cases, data availability was uneven in the SUDOE area. In addition, this information was dispersed among several managers and in different formats due to different sampling sources: Water Framework Directive (WFD), Community Framework for the Collection, Management and Use of Data in the Fisheries Sector (EUMAP), Eel Management Plans, research groups, scientific papers and technical reports. Therefore, the first step towards having eel abundance estimations including the whole SUDOE area, was to have a joint river and eel database. In this report we will describe the database corresponding to the river’s characteristics in the SUDOE area and the eel abundances and their characteristics.
In the case of rivers, two types of information has been collected:
River topology (RN table): a compilation of data on rivers and their topological and hydrographic characteristics in the three countries.
River attributes (RNA table): contains physical attributes that have fed the SUDOANG models.
The estimation of eel abundance and characteristic (size, biomass, sex-ratio and silver) distribution at different scales (river segment, basin, Eel Management Unit (EMU), and country) in the SUDOE area obtained with the implementation of the EDA2.3 model has been compiled in the RNE table (eel predictions).
CURRENT ACTIVE PROJECT
The project is currently active here : gitlab forgemia
TECHNICAL DESCRIPTION TO BUILD THE POSTGRES DATABASE
All tables are in ESPG:3035 (European LAEA). The format is postgreSQL database. You can download other formats (shapefiles, csv), here SUDOANG gt1 database.
Initial command
cd c:/path/to/my/folder
createdb -U postgres eda2.3 psql -U postgres eda2.3
Within the psql command
create extension "postgis"; create extension "dblink"; create extension "ltree"; create extension "tablefunc"; create schema dbeel_rivers; create schema france; create schema spain; create schema portugal; -- type \q to quit the psql shell
Now the database is ready to receive the differents dumps. The dump file are large. You might not need the part including unit basins or waterbodies. All the tables except waterbodies and unit basins are described in the Atlas. You might need to understand what is inheritance in a database. https://www.postgresql.org/docs/12/tutorial-inheritance.html
These layers contain the topology (see Atlas for detail)
dbeel_rivers.rn
france.rn
spain.rn
portugal.rn
Columns (see Atlas)
gid
idsegment
source
target
lengthm
nextdownidsegment
path
isfrontier
issource
seaidsegment
issea
geom
isendoreic
isinternational
country
dbeel_rivers.rn_rivermouth
seaidsegment
geom (polygon)
gerem_zone_3
gerem_zone_4 (used in EDA)
gerem_zone_5
ccm_wso_id
country
emu_name_short
geom_outlet (point)
name_basin
dist_from_gibraltar_km
name_coast
basin_name
pg_restore -U postgres -d eda2.3 "dbeel_rivers.rn.backup"
pg_restore -U postgres -d eda2.3 "france.rn.backup"
pg_restore -U postgres -d eda2.3 "spain.rn.backup"
pg_restore -U postgres -d eda2.3 "portugal.rn.backup"
for each basin flowing to the sea. pg_restore -U postgres -d eda2.3 "dbeel_rivers.rn_rivermouth.backup"
psql -U postgres -d eda2.3 -f "function_dbeel_rivers.sql"
This corresponds to tables
dbeel_rivers.rna
france.rna
spain.rna
portugal.rna
Columns (See Atlas)
idsegment
altitudem
distanceseam
distancesourcem
cumnbdam
medianflowm3ps
surfaceunitbvm2
surfacebvm2
strahler
shreeve
codesea
name
pfafriver
pfafsegment
basin
riverwidthm
temperature
temperaturejan
temperaturejul
wettedsurfacem2
wettedsurfaceotherm2
lengthriverm
emu
cumheightdam
riverwidthmsource
slope
dis_m3_pyr_riveratlas
dis_m3_pmn_riveratlas
dis_m3_pmx_riveratlas
drought
drought_type_calc
Code :
pg_restore -U postgres -d eda2.3 "dbeel_rivers.rna.backup"
pg_restore -U postgres -d eda2.3 "france.rna.backup"
pg_restore -U postgres -d eda2.3 "spain.rna.backup"
pg_restore -U postgres -d eda2.3 "portugal.rna.backup"
These layers contain eel data (see Atlas for detail)
dbeel_rivers.rne
france.rne
spain.rne
portugal.rne
Columns (see Atlas)
idsegment
surfaceunitbvm2
surfacebvm2
delta
gamma
density
neel
beel
peel150
peel150300
peel300450
peel450600
peel600750
peel750
nsilver
bsilver
psilver150300
psilver300450
psilver450600
psilver600750
psilver750
psilver
pmale150300
pmale300450
pmale450600
pfemale300450
pfemale450600
pfemale600750
pfemale750
pmale
pfemale
sex_ratio
cnfemale300450
cnfemale450600
cnfemale600750
cnfemale750
cnmale150300
cnmale300450
cnmale450600
cnsilver150300
cnsilver300450
cnsilver450600
cnsilver600750
cnsilver750
cnsilver
delta_tr
gamma_tr
type_fit_delta_tr
type_fit_gamma_tr
density_tr
density_pmax_tr
neel_pmax_tr
nsilver_pmax_tr
density_wd
neel_wd
beel_wd
nsilver_wd
bsilver_wd
sector_tr
year_tr
is_current_distribution_area
is_pristine_distribution_area_1985
Code for restauration
pg_restore -U postgres -d eda2.3 "dbeel_rivers.rne.backup"
pg_restore -U postgres -d eda2.3 "france.rne.backup"
pg_restore -U postgres -d eda2.3 "spain.rne.backup"
pg_restore -U postgres -d eda2.3 "portugal.rne.backup"
Units basins are not described in the Altas. They correspond to the following tables :
dbeel_rivers.basinunit_bu
france.basinunit_bu
spain.basinunit_bu
portugal.basinunit_bu
france.basinunitout_buo
spain.basinunitout_buo
portugal.basinunitout_buo
The unit basins is the simple basin that surrounds a segment. It correspond to the topography unit from which unit segment have been calculated. ESPG 3035. Tables bu_unitbv, and bu_unitbvout inherit from dbeel_rivers.unit_bv. The first table intersects with a segment, the second table does not, it corresponds to basin polygons which do not have a riversegment.
Source :
Portugal
France
In france unit bv corresponds to the RHT (Pella et al., 2012)
Spain
pg_restore -U postgres -d eda2.3 'dbeel_rivers.basinunit_bu.backup'
pg_restore -U postgres -d eda2.3
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Abstract This project presents a comprehensive analysis of a company's annual sales, using the classic dataset classicmodels as the database. Python is used as the main programming language, along with the Pandas, NumPy and SQLAlchemy libraries for data manipulation and analysis, and PostgreSQL as the database management system.
The main objective of the project is to answer key questions related to the company's sales performance, such as: Which were the most profitable products and customers? Were sales goals met? The results obtained serve as input for strategic decision making in future sales campaigns.
Methodology 1. Data Extraction:
2. Data Cleansing and Transformation:
3. Exploratory Data Analysis (EDA):
4. Modeling and Prediction:
5. Report Generation:
Results - Identification of top products and customers: The best-selling products and the customers that generate the most revenue are identified. - Analysis of sales trends: Sales trends over time are analyzed and possible factors that influence sales behavior are identified. - Calculation of key metrics: Metrics such as average profit margin and sales growth rate are calculated.
Conclusions This project demonstrates how Python and PostgreSQL can be effectively used to analyze large data sets and obtain valuable insights for business decision making. The results obtained can serve as a starting point for future research and development in the area of sales analysis.
Technologies Used - Python: Pandas, NumPy, SQLAlchemy, Matplotlib/Seaborn - Database: PostgreSQL - Tools: Jupyter Notebook - Keywords: data analysis, Python, PostgreSQL, Pandas, NumPy, SQLAlchemy, EDA, sales, business intelligence
Facebook
TwitterThe Forager.ai Global Install Base Data set is a leading source of firmographic data, backed by advanced AI and offering the highest refresh rate in the industry.
| Volume and Stats |
| Use Cases |
Sales Platforms, ABM and Intent Data Platforms, Identity Platforms, Data Vendors:
Example applications include:
Uncover trending technologies or tools gaining popularity.
Pinpoint lucrative business prospects by identifying similar solutions utilized by a specific company.
Study a company's tech stacks to understand the technical capability and skills available within that company.
B2B Tech Companies:
Venture Capital and Private Equity:
| Delivery Options |
Our dataset provides a unique blend of volume, freshness, and detail that is perfect for Sales Platforms, B2B Tech, VCs & PE firms, Marketing Automation, ABM & Intent. It stands as a cornerstone in our broader data offering, ensuring you have the information you need to drive decision-making and growth.
Tags: Company Data, Company Profiles, Employee Data, Firmographic Data, AI-Driven Data, High Refresh Rate, Company Classification, Private Market Intelligence, Workforce Intelligence, Public Companies.
Facebook
TwitterThis dataset contains the predicted prices of the asset PostgreSQL over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset that the database dump was created from is described here: 10.33774/chemrxiv-2021-1rxhk
A dump of the postgres database created from the code in the 'postgres' directory (Papyrus-scripts/src/papyrus_scripts/postgres/) of Rachael Skyner's fork (https://github.com/reskyner/Papyrus-scripts) of Oliver Bequignon's Papyrus-scripts github (https://github.com/OlivierBeq/Papyrus-scripts). The database was created by:
1. Download the papyrus csv files from Oliver's code using the download functionality
2. Spin up a 'papyrus' container using the docker-compose.yml file in Rachael's fork (running on a machine with access to the postgres instance you want to add the database to)
3. Start a shell in the papyrus container with docker exec -it papyrus /bin/bash
4. Start a jupyter notebook server with jupyter notebook --ip 0.0.0.0 --allow-root --no-browser
5. Run the two notebooks (1-insert_molecule_data.ipynb and 2-insert_activities.ipynb) in order
6. Create a dump of the database
Facebook
TwitterMagnetique: An interactive web application to explore transcriptome signatures of heart failure
Supplementary dataset.
db_dump.sql.gz: This is a daily backup-dump of the Magnetique database obtained on 18.07.2022 and shared for reproducibility purposes
Other files are required as input for the modeling steps detailed at https://github.com/dieterich-lab/magnetiqueCode2022
Refer to https://shiny.dieterichlab.org/app/magnetique or contact the authors for details.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is a dump generated by pg_dump -Fc of the IMDb data used in the "How Good are Query Optimizers, Really?" paper. PostgreSQL compatible SQL queries and scripts to automatically create a VM with this dataset can be found here: https://git.io/imdb
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.
This repository contains two files:
The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.
The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:
In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.
Reproducing the Analysis
This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:
Ubuntu 18.04.1 LTS
PostgreSQL 10.6
Conda 4.5.11
Python 3.7.2
PdfCrop 2012/11/02 v1.38
First, download dump.tar.bz2 and extract it:
tar -xjf dump.tar.bz2
It extracts the file db2019-03-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:
psql jupyter < db2019-03-13.dump
It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Create a conda environment with Python 3.7:
conda create -n analyses python=3.7
conda activate analyses
Go to the analyses folder and install all the dependencies of the requirements.txt
cd jupyter_reproducibility/analyses
pip install -r requirements.txt
For reproducing the analyses, run jupyter on this folder:
jupyter notebook
Execute the notebooks on this order:
Reproducing or Expanding the Collection
The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.
Requirements
This time, we have extra requirements:
All the analysis requirements
lbzip2 2.5
gcc 7.3.0
Github account
Gmail account
Environment
First, set the following environment variables:
export JUP_MACHINE="db"; # machine identifier
export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
export JUP_COMPRESSION="lbzip2"; # compression program
export JUP_VERBOSE="5"; # verbose level
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
export JUP_GITHUB_USERNAME="github_username"; # your github username
export JUP_GITHUB_PASSWORD="github_password"; # your github password
export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
export JUP_WITH_EXECUTION="1"; # run execute python notebooks
export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
export JUP_EXECUTION_MODE="-1"; # run following the execution order
export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
# Frequenci of log report
export JUP_ASTROID_FREQUENCY="5";
export JUP_IPYTHON_FREQUENCY="5";
export JUP_NOTEBOOKS_FREQUENCY="5";
export JUP_REQUIREMENT_FREQUENCY="5";
export JUP_CRAWLER_FREQUENCY="1";
export JUP_CLONE_FREQUENCY="1";
export JUP_COMPRESS_FREQUENCY="5";
export JUP_DB_IP="localhost"; # postgres database IP
Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf
Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.
Scripts
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):
Conda 2.7
conda create -n raw27 python=2.7 -y
conda activate raw27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 2.7
conda create -n py27 python=2.7 anaconda -y
conda activate py27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.4
It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.
conda create -n raw34 python=3.4 -y
conda activate raw34
conda install jupyter -c conda-forge -y
conda uninstall jupyter -y
pip install --upgrade pip
pip install jupyter
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
pip install pathlib2
Anaconda 3.4
conda create -n py34 python=3.4 anaconda -y
conda activate py34
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.5
conda create -n raw35 python=3.5 -y
conda activate raw35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.5
It requires the manual installation of other anaconda packages.
conda create -n py35 python=3.5 anaconda -y
conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
conda activate py35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.6
conda create -n raw36 python=3.6 -y
conda activate raw36
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.6
conda create -n py36 python=3.6 anaconda -y
conda activate py36
conda install -y anaconda-navigator jupyterlab_server navigator-updater
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.7
<code
Facebook
TwitterI completed a PostgreSQL project to hone my SQL abilities. Following a tutorial video, I worked on a music store data analysis. In the project, I used SQL to answer several queries about the music shop company.
Facebook
TwitterThis dataset contains the predicted prices of the asset RUST-POSTGRES github.com/sfackler/RUST-POSTGRES over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Publicly accessible databases often impose query limits or require registration. Even when I maintain public and limit-free APIs, I never wanted to host a public database because I tend to think that the connection strings are a problem for the user.
I’ve decided to host different light/medium size by using PostgreSQL, MySQL and SQL Server backends (in strict descending order of preference!).
Why 3 database backends? I think there are a ton of small edge cases when moving between DB back ends and so testing lots with live databases is quite valuable. With this resource you can benchmark speed, compression, and DDL types.
Please send me a tweet if you need the connection strings for your lectures or workshops. My Twitter username is @pachamaltese. See the SQL dumps on each section to have the data locally.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10074224%2F428950174ca8917693d9a125242c9a02%2F2.png?generation=1688974937835056&alt=media" alt="">
Launch pagila-schema.sql code in PgAdmin 4 and then launch pagila-insert-data.sql
Don't forget to switch on auto-commit mode.
Facebook
TwitterAs of June 2024, the most popular database management system (DBMS) worldwide was Oracle, with a ranking score of *******; MySQL and Microsoft SQL server rounded out the top three. Although the database management industry contains some of the largest companies in the tech industry, such as Microsoft, Oracle and IBM, a number of free and open-source DBMSs such as PostgreSQL and MariaDB remain competitive. Database Management Systems As the name implies, DBMSs provide a platform through which developers can organize, update, and control large databases. Given the business world’s growing focus on big data and data analytics, knowledge of SQL programming languages has become an important asset for software developers around the world, and database management skills are seen as highly desirable. In addition to providing developers with the tools needed to operate databases, DBMS are also integral to the way that consumers access information through applications, which further illustrates the importance of the software.
Facebook
TwitterOpen source object relational database system that uses and extends SQL language combined with many features that safely store and scale the most complicated data workloads. PostgreSQL runs on all major operating systems.
Facebook
TwitterIn 2023, over ** percent of surveyed software developers worldwide reported using PostgreSQL, the highest share of any database technology. Other popular database tools among developers included MySQL and SQLite.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Managed PostgreSQL Services market size reached USD 1.68 billion in 2024, with a robust year-on-year growth trajectory. The market is projected to expand at a CAGR of 17.2% during the forecast period, reaching approximately USD 7.09 billion by 2033. This remarkable growth is primarily driven by increasing enterprise adoption of open-source databases, the rising demand for scalable and secure data management solutions, and heightened digital transformation initiatives across industries. As organizations seek to streamline operations and enhance data-driven decision-making, managed PostgreSQL services are emerging as a critical enabler for modern IT infrastructures.
One of the most significant growth factors for the Managed PostgreSQL Services market is the rapid acceleration of cloud adoption across enterprises of all sizes. Businesses are increasingly migrating their workloads to the cloud to capitalize on the agility, scalability, and cost efficiencies it offers. PostgreSQL, as a leading open-source relational database, has gained immense popularity due to its flexibility, extensibility, and strong community support. Managed service providers are leveraging these attributes by offering fully managed PostgreSQL solutions that reduce the operational burden on IT teams, ensure high availability, and provide automated backup and disaster recovery capabilities. This shift to managed services not only reduces infrastructure management complexities but also enables organizations to focus on core business innovation, further fueling market growth.
Another pivotal factor propelling the managed PostgreSQL services market is the heightened emphasis on data security, compliance, and regulatory requirements. As data privacy regulations such as GDPR, CCPA, and others become increasingly stringent, organizations are compelled to adopt secure and compliant database management solutions. Managed PostgreSQL service providers are investing heavily in advanced security features such as encryption at rest and in transit, automated patch management, and comprehensive access controls to address these concerns. Additionally, the integration of monitoring and performance optimization tools ensures that enterprises can proactively manage database health, minimize downtime, and meet service level agreements (SLAs). This growing need for robust security and compliance frameworks is expected to sustain strong demand for managed PostgreSQL services in the coming years.
The ongoing digital transformation across various industry verticals, including BFSI, healthcare, IT & telecommunications, and retail, is also a major contributor to the market's expansion. These sectors are experiencing exponential data growth, necessitating highly reliable, scalable, and cost-effective database management solutions. Managed PostgreSQL services offer seamless integration with modern application architectures, including microservices and containerized environments, supporting the rapid deployment and scaling of mission-critical applications. Furthermore, the proliferation of artificial intelligence, machine learning, and analytics-driven workloads is creating new opportunities for managed PostgreSQL services, as organizations seek to leverage real-time insights from their data assets.
From a regional perspective, North America continues to dominate the managed PostgreSQL services market, driven by the presence of major cloud service providers, advanced IT infrastructure, and a high concentration of technology-driven enterprises. Europe is following closely, propelled by strict data protection regulations and increasing investments in digital transformation initiatives. Meanwhile, the Asia Pacific region is witnessing the fastest growth, fueled by the rapid expansion of digital economies, increasing cloud adoption among SMEs, and government-led initiatives to modernize IT infrastructure. Latin America and the Middle East & Africa are also demonstrating steady growth, albeit at a comparatively moderate pace, as enterprises in these regions gradually embrace managed database solutions.
The service type segment of the managed PostgreSQL services market encompasses a range of offerings, including database administration, backup & recovery, security & compliance, monitoring & performance optimization, and other specialized ser
Facebook
Twitter
As per our latest research, the global managed PostgreSQL services market size reached USD 2.1 billion in 2024, reflecting robust adoption across industries seeking scalable, reliable, and secure database management solutions. With a strong compound annual growth rate (CAGR) of 16.8% projected from 2025 to 2033, the market is expected to climb to USD 8.1 billion by 2033. This impressive growth trajectory is underpinned by increasing digital transformation initiatives, the proliferation of cloud-native applications, and the critical need for streamlined database administration and security in a data-driven world.
The managed PostgreSQL services market is witnessing significant momentum due to the surging demand for cost-effective, scalable, and high-performance database solutions among enterprises of all sizes. Organizations are increasingly migrating to managed database services to alleviate the burdens of in-house database maintenance, reduce operational costs, and ensure business continuity. The integration of advanced automation, artificial intelligence, and machine learning capabilities into managed PostgreSQL offerings further enhances performance optimization, predictive maintenance, and intelligent monitoring, making these services indispensable for modern enterprises. Additionally, the rise of DevOps and agile development methodologies has necessitated robust, flexible, and managed database solutions that can seamlessly integrate with CI/CD pipelines, further fueling market expansion.
Another key driver propelling the managed PostgreSQL services market is the heightened focus on data security, compliance, and regulatory requirements, particularly in highly regulated industries such as BFSI, healthcare, and government. Managed service providers offer comprehensive security frameworks, including encryption, access controls, and automated backup and disaster recovery, which are vital for organizations handling sensitive and mission-critical data. The growing complexity of cyber threats and the need for adherence to standards like GDPR, HIPAA, and PCI DSS have made managed PostgreSQL services an attractive proposition for enterprises seeking to mitigate risks and ensure regulatory compliance without incurring the costs and complexities of managing these aspects internally.
Furthermore, the increasing adoption of cloud computing and hybrid IT environments has accelerated the shift towards managed PostgreSQL services. As organizations embrace multi-cloud and hybrid strategies to enhance agility, scalability, and resilience, managed PostgreSQL solutions offer seamless integration, centralized management, and cross-platform compatibility. The ability to deploy, monitor, and optimize PostgreSQL databases across diverse environments, including public, private, and hybrid clouds, positions managed services as a strategic enabler of digital transformation. These services also support business continuity and disaster recovery strategies, ensuring minimal downtime and rapid recovery in the event of system failures or cyber incidents.
From a regional perspective, North America continues to dominate the managed PostgreSQL services market, driven by the presence of leading technology companies, early adoption of cloud technologies, and a mature digital ecosystem. Europe follows closely, with strong demand from banking, finance, healthcare, and government sectors. The Asia Pacific region is emerging as a high-growth market, fueled by rapid digitalization, a burgeoning start-up ecosystem, and increasing investments in IT infrastructure. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as organizations in these regions accelerate their cloud adoption and digital transformation journeys.
Managed Presto Services have emerged as a complementary solution to managed PostgreSQL services, particularly for organizations that require high-performance, distributed SQL query engines for big data analytics. As businesses increasingly rely on data-driven insights to inform strategic decisions, the integration of Presto with PostgreSQL enables real-time querying and analysis of vast datasets across diverse data sources. This synergy allows enterprises to harness the power of
Facebook
Twitterhttps://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the Global Serverless Postgres market size was valued at $1.2 billion in 2024 and is projected to reach $7.8 billion by 2033, expanding at a robust CAGR of 23.6% during 2024–2033. The primary growth driver for the Serverless Postgres market globally is the rising demand for scalable, cost-efficient, and highly available database solutions that eliminate the need for complex infrastructure management. As organizations accelerate their digital transformation journeys, the adoption of serverless databases, particularly Serverless Postgres, is surging due to its ability to seamlessly handle dynamic workloads, reduce operational overhead, and optimize resource allocation. This shift is further fueled by the proliferation of cloud-native applications and the increasing need for real-time data analytics across industries.
North America currently holds the largest share of the global Serverless Postgres market, accounting for nearly 38% of total revenue in 2024. This dominance is attributed to the region’s mature cloud infrastructure, high concentration of technology companies, and early adoption of advanced database technologies. The presence of major cloud providers and a robust ecosystem of managed service vendors has facilitated rapid deployment and integration of serverless database solutions among enterprises. Furthermore, favorable regulatory frameworks, a strong focus on data security, and significant investments in AI and big data analytics have contributed to the region’s leadership position. The United States, in particular, continues to be the epicenter of innovation, with organizations leveraging Serverless Postgres for mission-critical applications in finance, healthcare, and e-commerce.
Asia Pacific is emerging as the fastest-growing region in the Serverless Postgres market, projected to register an impressive CAGR of 28.9% over the forecast period. The rapid digitalization of economies such as China, India, and Southeast Asian countries, coupled with increasing cloud adoption among SMEs and large enterprises, is fueling market expansion. Governments across the region are investing heavily in cloud infrastructure, data sovereignty, and smart city initiatives, which are further accelerating the adoption of serverless database technologies. Additionally, the rise of mobile applications, IoT deployments, and e-commerce platforms is creating new opportunities for Serverless Postgres providers to cater to diverse, high-growth use cases.
In emerging economies across Latin America, the Middle East, and Africa, the Serverless Postgres market is witnessing steady growth, albeit from a smaller base. Adoption challenges persist due to limited cloud infrastructure, skills shortages, and concerns over data localization and regulatory compliance. However, localized demand for cost-effective, scalable database solutions is rising, particularly among startups and government agencies aiming to modernize their IT environments. Policy reforms, such as incentives for cloud adoption and digital transformation, are gradually creating a more conducive environment for serverless technologies. As connectivity improves and awareness grows, these regions are expected to contribute increasingly to global market revenues.
| Attributes | Details |
| Report Title | Serverless Postgres Market Research Report 2033 |
| By Deployment Type | Public Cloud, Private Cloud, Hybrid Cloud |
| By Component | Database, Tools & Services |
| By Organization Size | Small and Medium Enterprises, Large Enterprises |
| By Application | Data Analytics, Web Applications, Mobile Applications, IoT, Others |
| By End-User < |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The self-documenting aspects and the ability to reproduce results have been touted as significant benefits of Jupyter Notebooks. At the same time, there has been growing criticism that the way notebooks are being used leads to unexpected behavior, encourage poor coding practices and that their results can be hard to reproduce. To understand good and bad practices used in the development of real notebooks, we analyzed 1.4 million notebooks from GitHub.
This repository contains two files:
The dump.tar.bz2 file contains a PostgreSQL dump of the database, with all the data we extracted from the notebooks.
The jupyter_reproducibility.tar.bz2 file contains all the scripts we used to query and download Jupyter Notebooks, extract data from them, and analyze the data. It is organized as follows:
In the remaining of this text, we give instructions for reproducing the analyses, by using the data provided in the dump and reproducing the collection, by collecting data from GitHub again.
Reproducing the Analysis
This section shows how to load the data in the database and run the analyses notebooks. In the analysis, we used the following environment:
Ubuntu 18.04.1 LTS
PostgreSQL 10.6
Conda 4.5.1
Python 3.6.8
PdfCrop 2012/11/02 v1.38
First, download dump.tar.bz2 and extract it:
tar -xjf dump.tar.bz2
It extracts the file db2019-01-13.dump. Create a database in PostgreSQL (we call it "jupyter"), and use psql to restore the dump:
psql jupyter < db2019-01-13.dump
It populates the database with the dump. Now, configure the connection string for sqlalchemy by setting the environment variable JUP_DB_CONNECTTION:
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter";
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Create a conda environment with Python 3.6:
conda create -n py36 python=3.6
Go to the analyses folder and install all the dependencies of the requirements.txt
cd jupyter_reproducibility/analyses
pip install -r requirements.txt
For reproducing the analyses, run jupyter on this folder:
jupyter notebook
Execute the notebooks on this order:
Reproducing or Expanding the Collection
The collection demands more steps to reproduce and takes much longer to run (months). It also involves running arbitrary code on your machine. Proceed with caution.
Requirements
This time, we have extra requirements:
All the analysis requirements
lbzip2 2.5
gcc 7.3.0
Github account
Gmail account
Environment
First, set the following environment variables:
export JUP_MACHINE="db"; # machine identifier
export JUP_BASE_DIR="/mnt/jupyter/github"; # place to store the repositories
export JUP_LOGS_DIR="/home/jupyter/logs"; # log files
export JUP_COMPRESSION="lbzip2"; # compression program
export JUP_VERBOSE="5"; # verbose level
export JUP_DB_CONNECTION="postgresql://user:password@hostname/jupyter"; # sqlchemy connection
export JUP_GITHUB_USERNAME="github_username"; # your github username
export JUP_GITHUB_PASSWORD="github_password"; # your github password
export JUP_MAX_SIZE="8000.0"; # maximum size of the repositories directory (in GB)
export JUP_FIRST_DATE="2013-01-01"; # initial date to query github
export JUP_EMAIL_LOGIN="gmail@gmail.com"; # your gmail address
export JUP_EMAIL_TO="target@email.com"; # email that receives notifications
export JUP_OAUTH_FILE="~/oauth2_creds.json" # oauth2 auhentication file
export JUP_NOTEBOOK_INTERVAL=""; # notebook id interval for this machine. Leave it in blank
export JUP_REPOSITORY_INTERVAL=""; # repository id interval for this machine. Leave it in blank
export JUP_WITH_EXECUTION="1"; # run execute python notebooks
export JUP_WITH_DEPENDENCY="0"; # run notebooks with and without declared dependnecies
export JUP_EXECUTION_MODE="-1"; # run following the execution order
export JUP_EXECUTION_DIR="/home/jupyter/execution"; # temporary directory for running notebooks
export JUP_ANACONDA_PATH="~/anaconda3"; # conda installation path
export JUP_MOUNT_BASE="/home/jupyter/mount_ghstudy.sh"; # bash script to mount base dir
export JUP_UMOUNT_BASE="/home/jupyter/umount_ghstudy.sh"; # bash script to umount base dir
export JUP_NOTEBOOK_TIMEOUT="300"; # timeout the extraction
# Frequenci of log report
export JUP_ASTROID_FREQUENCY="5";
export JUP_IPYTHON_FREQUENCY="5";
export JUP_NOTEBOOKS_FREQUENCY="5";
export JUP_REQUIREMENT_FREQUENCY="5";
export JUP_CRAWLER_FREQUENCY="1";
export JUP_CLONE_FREQUENCY="1";
export JUP_COMPRESS_FREQUENCY="5";
export JUP_DB_IP="localhost"; # postgres database IP
Then, configure the file ~/oauth2_creds.json, according to yagmail documentation: https://media.readthedocs.org/pdf/yagmail/latest/yagmail.pdf
Configure the mount_ghstudy.sh and umount_ghstudy.sh scripts. The first one should mount the folder that stores the directories. The second one should umount it. You can leave the scripts in blank, but it is not advisable, as the reproducibility study runs arbitrary code on your machine and you may lose your data.
Scripts
Download and extract jupyter_reproducibility.tar.bz2:
tar -xjf jupyter_reproducibility.tar.bz2
Install 5 conda environments and 5 anaconda environments, for each python version. In each of them, upgrade pip, install pipenv, and install the archaeology package (Note that it is a local package that has not been published to pypi. Make sure to use the -e option):
Conda 2.7
conda create -n raw27 python=2.7 -y
conda activate raw27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 2.7
conda create -n py27 python=2.7 anaconda -y
conda activate py27
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.4
It requires a manual jupyter and pathlib2 installation due to some incompatibilities found on the default installation.
conda create -n raw34 python=3.4 -y
conda activate raw34
conda install jupyter -c conda-forge -y
conda uninstall jupyter -y
pip install --upgrade pip
pip install jupyter
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
pip install pathlib2
Anaconda 3.4
conda create -n py34 python=3.4 anaconda -y
conda activate py34
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.5
conda create -n raw35 python=3.5 -y
conda activate raw35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.5
It requires the manual installation of other anaconda packages.
conda create -n py35 python=3.5 anaconda -y
conda install -y appdirs atomicwrites keyring secretstorage libuuid navigator-updater prometheus_client pyasn1 pyasn1-modules spyder-kernels tqdm jeepney automat constantly anaconda-navigator
conda activate py35
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.6
conda create -n raw36 python=3.6 -y
conda activate raw36
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.6
conda create -n py36 python=3.6 anaconda -y
conda activate py36
conda install -y anaconda-navigator jupyterlab_server navigator-updater
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Conda 3.7
conda create -n raw37 python=3.7 -y
conda activate raw37
pip install --upgrade pip
pip install pipenv
pip install -e jupyter_reproducibility/archaeology
Anaconda 3.7
When we
Facebook
TwitterOpen source object relational database system that uses and extends SQL language combined with many features that safely store and scale the most complicated data workloads. PostgreSQL runs on all major operating systems.