75 datasets found
  1. C

    Poverty Rate

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

    The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

    The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

    Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

    *According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  2. U.S. poverty rate 1990-2023

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. poverty rate 1990-2023 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.

  3. School Neighborhood Poverty Estimates, 2018-19

    • s.cnmilf.com
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). School Neighborhood Poverty Estimates, 2018-19 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/school-neighborhood-poverty-estimates-2018-19-2347e
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The 2018-2019 School Neighborhood Poverty Estimates are based on school locations from the 2018-2019 Common Core of Data (CCD) school file and income data from families with children ages 5 to 17 in the U.S. Census Bureau’s 2015-2019 American Community Survey (ACS) 5-year collection. The ACS is a continuous household survey that collects social, demographic, economic, and housing information from the population in the United States each month. The Census Bureau calculates the income-to-poverty ratio (IPR) based on money income reported for families relative to the poverty thresholds, which are determined based on the family size and structure. Noncash benefits (such as food stamps and housing subsidies) are excluded, as are capital gains and losses. The IPR is the percentage of family income that is above or below the federal poverty level. The IPR indicator ranges from 0 to a top-coded value of 999. A family with income at the poverty threshold has an IPR value of 100. The estimates in this file reflect the IPR for the neighborhoods around schools which may be different from the neighborhood conditions of students enrolled in schools.All information contained in this file is in the public _domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  4. Poverty headcount ratio in Egypt 2018-2023

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Poverty headcount ratio in Egypt 2018-2023 [Dataset]. https://www.statista.com/statistics/1237041/poverty-headcount-ratio-in-egypt/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Egypt
    Description

    As of 2022, the poverty rate was projected at **** percent in Egypt. This was nearly *** percentage points less than the year before. Overall, from 2018 onwards, the poverty rate dropped to **** percent in 2019, before increasing again to about ** percent in 2020. Since 2020, projected poverty rates have followed a declining trend. They are expected to decrease further in 2023. The outbreak of the coronavirus (COVID-19) pandemic contributed to the increase of the poverty rate in 2020. Adjusted national poverty lines National poverty lines are calculated based on consumption patterns of households in the country and are therefore adjustable over the years. Egypt’s national poverty line stood at ****** Egyptian pounds (comparable to ****** U.S. dollars) annually as of 2019/2020. This was an increase from ***** Egyptian pounds (****** U.S. dollars) ten years prior. In November 2016, the Central Bank of Egypt (CBE) declared that it fully floated the Egyptian pound, causing the currency devaluation.   Poverty more prevalent among larger households Poverty rates in the country were higher in households with more individuals. In households with *** or more members, the rate was as high as **** percent in 2019/2020. On the other hand, the poverty rate was significantly lower among households with *** to ***** members. Moreover, Rural Egypt had a higher share of population considered poor compared to Urban Egypt. In fact, in its rural areas in Upper Egypt, the poverty rate reached nearly ** percent.   

  5. Fuel poverty detailed tables 2018

    • gov.uk
    • s3.amazonaws.com
    Updated Mar 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Business, Energy & Industrial Strategy (2021). Fuel poverty detailed tables 2018 [Dataset]. https://www.gov.uk/government/statistics/fuel-poverty-detailed-tables-2018
    Explore at:
    Dataset updated
    Mar 4, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Business, Energy & Industrial Strategy
    Description

    As announced in the government’s 2021 fuel poverty strategy, Sustainable Warmth, official fuel poverty statistical data from 2019 onwards will be based on the Low Income Low Energy Efficiency (LILEE) indicator.

    2016 fuel poverty detailed tables under the Low Income High Costs (LIHC) and Low Income Low Energy Efficiency (LILEE) indicators.

    Contact us

    If you have questions about these statistics, please email: fuelpoverty@beis.gov.uk.

  6. School Neighborhood Poverty Estimates - Current

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). School Neighborhood Poverty Estimates - Current [Dataset]. https://catalog.data.gov/dataset/school-neighborhood-poverty-estimates-current-ab636
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The 2020-2021 School Neighborhood Poverty Estimates are based on school locations from the 2020-2021 Common Core of Data (CCD) school file and income data from families with children ages 5 to 18 in the U.S. Census Bureau’s 2017-2021 American Community Survey (ACS) 5-year collection. The ACS is a continuous household survey that collects social, demographic, economic, and housing information from the population in the United States each month. The Census Bureau calculates the income-to-poverty ratio (IPR) based on money income reported for families relative to the poverty thresholds, which are determined based on the family size and structure. Noncash benefits (such as food stamps and housing subsidies) are excluded, as are capital gains and losses. The IPR is the percentage of family income that is above or below the federal poverty level. The IPR indicator ranges from 0 to a top-coded value of 999. A family with income at the poverty threshold has an IPR value of 100. The estimates in this file reflect the IPR for the neighborhoods around schools which may be different from the neighborhood conditions of students enrolled in schools.Collections are available for the following years: School Neighborhood Poverty Estimates, 2020-2021School Neighborhood Poverty Estimates, 2019-2020 School Neighborhood Poverty Estimates, 2018-2019 School Neighborhood Poverty Estimates, 2017-2018 School Neighborhood Poverty Estimates, 2016-2017 School Neighborhood Poverty Estimates, 2015-2016 All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  7. Extreme poverty headcount ratio in Africa 2018-2024, by area of residence

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Extreme poverty headcount ratio in Africa 2018-2024, by area of residence [Dataset]. https://www.statista.com/statistics/1254364/poverty-headcount-ratio-in-africa-by-area-of-residence/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa
    Description

    Extreme poverty in Africa is prevalent in rural areas. In 2024, ** percent of the continent's rural population was living with less than **** U.S. dollars a day. On the other hand, extreme poverty concerns only ***** percent of the urban population.

  8. School Neighborhood Poverty Estimates, 2017-18

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). School Neighborhood Poverty Estimates, 2017-18 [Dataset]. https://catalog.data.gov/dataset/school-neighborhood-poverty-estimates-2017-18-72403
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The 2017-2018 School Neighborhood Poverty Estimates are based on school locations from the 2017-2018 Common Core of Data (CCD) school file and income data from families with children ages 5 to 17 in the U.S. Census Bureau’s 2014-2018 American Community Survey (ACS) 5-year collection. The ACS is a continuous household survey that collects social, demographic, economic, and housing information from the population in the United States each month. The Census Bureau calculates the income-to-poverty ratio (IPR) based on money income reported for families relative to the poverty thresholds, which are determined based on the family size and structure. Noncash benefits (such as food stamps and housing subsidies) are excluded, as are capital gains and losses. The IPR is the percentage of family income that is above or below the federal poverty level. The IPR indicator ranges from 0 to a top-coded value of 999. A family with income at the poverty threshold has an IPR value of 100. The estimates in this file reflect the IPR for the neighborhoods around schools which may be different from the neighborhood conditions of students enrolled in schools.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  9. Sub-regional fuel poverty 2018

    • gov.uk
    Updated Jun 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Business, Energy & Industrial Strategy (2018). Sub-regional fuel poverty 2018 [Dataset]. https://www.gov.uk/government/statistics/sub-regional-fuel-poverty-2018
    Explore at:
    Dataset updated
    Jun 26, 2018
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Business, Energy & Industrial Strategy
    Description

    Experimental statistics on sub-regional fuel poverty - 2016 data.

  10. e

    Data from: Children in low income families

    • data.europa.eu
    unknown
    Updated Oct 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Children in low income families [Dataset]. https://data.europa.eu/data/datasets/children-in-low-income-families-1?locale=en
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 18, 2021
    Description

    About the dataset

    This dataset uses information from the DWP benefit system to provide estimates of children living in poverty for wards in London. In order to be counted in this dataset, a family must have claimed Child Benefit and at least one other household benefit (Universal Credit, tax credits or Housing Benefit) during the year. The numbers are calibrated to the Households Below Average Income (HBAI) dataset used to provide the government's headline poverty statistics. The definition of relative low income is living in a household with equivalised* income before housing costs (BHC) below 60% of contemporary national median income. The income measure includes contributions from earnings, state support and pensions.

    Further detail on the estimates of dependent children living in relative low income, including alternative geographical breakdowns and additional variables, such as age of children, family type and work status are available from DWP's statistical tabulation tool Stat-Xplore. Minor adjustments to the data have been applied to guard against the identification of individual claimants.

    This dataset replaced the DWP children in out-of-work benefit households and HMRC children in low income families local measure releases.

    This dataset includes estimates for all wards in London of numbers of dependent children living in relative low income families for each financial year from 2014/15 to the latest available (2022/23). The figures for the latest year are provisional and are subject to minor revision when the next dataset is released by DWP.


    Headlines

    Number of children

    The number of dependent children living in relative low income across London, rose from below 310,000 in the financial year ending 2015 to over 420,000 in the financial year ending 2020, but has decreased since then to below 350,000, which is well below the number for financial year ending 2018. While many wards in London have followed a similar pattern, the numbers of children in low income families in some wards have fallen more sharply, while the numbers in other wards have continued to grow.

    Proportion of children in each London ward

    Ward population sizes vary across London, the age profile of that population also varies and both the size and make-up of the population can change over time, so in order to make more meaningful comparisons between wards or over time, DWP have also published rates, though see note below regarding caution when using these figures.

    A dependent child is anyone aged under 16; or aged 16 to 19 in full-time non-advanced education or in unwaged government training. Ward level estimates for the total number of dependent children are not available, so percentages cannot be derived. Ward level estimates for the percentage of children under 16 living in low income families are usually published by DWP but, in its latest release, ward-level population estimates were not available at the time, so no rates were published. To derive the rates in this dataset, the GLA has used the ONS's latest ward-level population estimates (official statistics in development). Percentages for 2021/22 are calculated using the 2021 mid year estimates, while percentages for 2022/23 are calculated using the 2022 mid year estimates. As these are official statistics in development, rates therefore need to be treated with some caution.

    Notes

    *equivalised income is adjusted for household size and composition in order to compare living standards between households of different types.

  11. s

    Persistent low income

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2025). Persistent low income [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/work-pay-and-benefits/pay-and-income/low-income/latest
    Explore at:
    csv(81 KB), csv(304 KB)Available download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Between 2018 and 2022, people in households in the ‘other’, Asian and black ethnic groups were the most likely to be in persistent low income, both before and after housing costs, out of all ethnic groups.

  12. e

    English Housing Survey: Fuel Poverty Dataset, 2018 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Oct 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). English Housing Survey: Fuel Poverty Dataset, 2018 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/bcd1d0f7-0546-53bb-988b-defaf9191bb0
    Explore at:
    Dataset updated
    Oct 21, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The English Housing Survey (EHS ) Fuel Poverty Datasets are comprised of fuel poverty variables derived from the EHS, and a number of EHS variables commonly used in fuel poverty reporting. The EHS is a continuous national survey commissioned by the Ministry of Housing, Community and Local Government (MHCLG) that collects information about people's housing circumstances and the condition and energy efficiency of housing in England. End User Licence and Special Licence Versions Similar to the main EHS, two versions of the Fuel Poverty dataset are available from 2014 onwards. The Special Licence version contains additional, more detailed, variables, and is therefore subject to more restrictive access conditions. Users should check the End User Licence version first to see whether it meeds their needs, before making an application for the Special Licence version. Fuel Poverty Dataset The fuel poverty dataset is comprised of fuel poverty variables derived from the English Housing Survey (EHS), and a number of EHS variables commonly used in fuel poverty reporting. The fieldwork for the EHS is carried out each financial year (between April and March). The fuel poverty datasets combine data from two consecutive financial years. Full information on the EHS survey is available at the MHCLG EHS website and further information on Fuel Poverty and the EHS can be sought from FuelPoverty@beis.gov.uk and ehs@communities.gov.uk respectively. Guidance on use of EHS data provided by MHCLG should also be applied to the fuel poverty dataset. Further information may be found in the Annual Fuel Poverty Statistics Report: 2020 (2018 Data) on the gov.uk website.Latest edition informationFor the second edition (June 2021) the data file was replaced with a new version, with some errors corrected in the labelling of numeric values. Main Topics: The data cover modelled household fuel costs and consumption. See documentation for further details. Compilation/Synthesis

  13. b

    Percent of Family Households Living Below the Poverty Line

    • data.baltimorecity.gov
    • vital-signs-bniajfi.hub.arcgis.com
    Updated Feb 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Percent of Family Households Living Below the Poverty Line [Dataset]. https://data.baltimorecity.gov/maps/74337e706ee94cd8a8b8272564497946
    Explore at:
    Dataset updated
    Feb 27, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    Percent of family households living below the poverty line measures the percentage of households, out of all households in an area, whose income fell below the poverty threshold. Federal and state governments use such estimates to allocate funds to local communities. Local communities use these estimates to identify the number of individuals or families eligible for various programs. Source: American Community SurveyYears Available: 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html

  14. U.S. Kansas poverty rate 2000-2023

    • statista.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. Kansas poverty rate 2000-2023 [Dataset]. https://www.statista.com/statistics/205468/poverty-rate-in-kentucky/
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, about 16.4 percent of Kentucky's population lived below the poverty line. This accounts for persons or families whose collective income in the preceding 12 months was below the national poverty level of the United States.

  15. Population under the poverty line in Algeria 2018-2021

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population under the poverty line in Algeria 2018-2021 [Dataset]. https://www.statista.com/statistics/1218877/population-under-the-poverty-line-in-algeria/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Algeria
    Description

    The number of people living in poverty was reported at its highest in the last four years in Algeria at *** million as of 2021. This meant that the number of poor people increased from 2020 by *******. In contrast, both 2019 and 2018 recorded *** million cases of poverty. The fact that more people were living below the poverty line was probably due to the outbreak of the coronavirus (COVID-19).

  16. Dhaka Low Income Area Gender, Inclusion, and Poverty Survey 2018 -...

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Jan 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank Group (2021). Dhaka Low Income Area Gender, Inclusion, and Poverty Survey 2018 - Bangladesh [Dataset]. https://catalog.ihsn.org/catalog/8886
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset provided by
    World Bankhttp://topics.nytimes.com/top/reference/timestopics/organizations/w/world_bank/index.html
    Authors
    The World Bank Group
    Time period covered
    2018
    Area covered
    Bangladesh
    Description

    Abstract

    The 2018 Dhaka Low Income Area Gender, Inclusion, and Poverty (DIGNITY) survey attempts to fill in the data and knowledge gaps on women's economic empowerment in urban areas, specifically the factors that constrain women in slums and low-income neighborhoods from engaging in the labor market and supplying their labor to wage earning or self-employment. While an array of national-level datasets has collected a wide spectrum of information, they rarely comprise all of the information needed to study the drivers of Female Labor Force Participation (FLFP). This data gap is being filled by the primary data collection of the specialized DIGNITY survey; it is representative of poor urban areas and is specifically designed to address these limitations. The DIGNITY survey collected information from 1,300 urban households living in poor areas of Dhaka in 2018 on a range of issues that affect FLFP as identified through the literature. These range from household composition and demographic characteristics to socioeconomic characteristics such as detailed employment history and income (including locational data and travel details); and from technical and educational attributes to issues of time use, migration history, and attitudes and perceptions.

    The DIGNITY survey was designed to shed light on poverty, economic empowerment, and livelihood in urban areas of Bangladesh. It has two main modules: the traditional household module (in which the head of household is interviewed on basic information about the household); and the individual module, in which two respondents from each household are interviewed individually. In the second module, two persons - one male and one female from each household, usually the main couple, are selected for the interview. The survey team deployed one male and one female interviewer for each household, so that the gender of the interviewers matched that of the respondents. Collecting economic data directly from a female and male household member, rather than just the head of the household (who tend to be men in most cases), was a key feature of the DIGNITY survey.

    Geographic coverage

    The DIGNITY survey is representative of low-income areas and slums of the Dhaka City Corporations (North and South, from here on referred to as Dhaka CCs), and an additional low-income site from the Greater Dhaka Statistical Metropolitan Area (SMA).

    Analysis unit

    • Household
    • Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling procedure followed a two-stage stratification design. The major features include the following steps (they are discussed in more detail in a copy of the study's report and the sampling document located in "External Resources"):

    FIRST STAGE: Selection of the PSUs

    Low-income primary sampling units (PSUs) were defined as nonslum census enumeration areas (EAs), in which the small-sample area estimate of the poverty rate is higher than 8 percent (using the 2011 Bangladesh Poverty Map). The sampling frame for these low-income areas in the Dhaka City Corporations (CCs) and Greater Dhaka is based on the population census of 2011. For the Dhaka CCs, all low-income census EAs formed the sampling frame. In the Greater Dhaka area, the frame was formed by all low-income census EAs in specific thanas (i.e. administrative unit in Bangladesh) where World Bank project were located.

    Three strata were used for sampling the low-income EAs. These strata were defined based on the poverty head-count ratios. The first stratum encompasses EAs with a poverty headcount ratio between 8 and 10 percent; the second stratum between 11 and 14 percent; and the third stratum, those exceeding 15 percent.

    Slums were defined as informal settlements that were listed in the Bangladesh Bureau of Statistics' slum census from 2013/14. This census was used as sampling frame of the slum areas. Only slums in the Dhaka City Corporations are included. Again, three strata were used to sample the slums. This time the strata were based on the size of the slums. The first stratum comprises slums of 50 to 75 households; the second 76 to 99 households; and the third, 100 or more households. Small slums with fewer than 50 households were not included in the sampling frame. Very small slums were included in the low-income neighborhood selection if they are in a low-income area.

    Altogether, the DIGNITY survey collected data from 67 PSUs.

    SECOND STAGE: Selection of the Households

    In each sampled PSU a complete listing of households was done to form the frame for the second stage of sampling: the selection of households. When the number of households in a PSU was very large, smaller sections of the neighborhood were identified, and one section was randomly selected to be listed. The listing data collected information on the demographics of the household to determine whether a household fell into one of the three categories that were used to stratify the household sample:

    i) households with both working-age male and female members; ii) households with only a working-age female; iii) households with only a working-age male.

    Households were selected from each stratum with the predetermined ratio of 16:3:1. In some cases there were not enough households in categories (ii) and (iii) to stick to this ratio; in this case all of the households in the category were sampled, and additional households were selected from the first category to bring the total number of households sampled in each PSU to 20.

    The total sample consisted of 1,300 households (2,378 individuals).

    Sampling deviation

    The sampling for 1300 households was planned after the listing exercise. During the field work, about 115 households (8.8 percent) could not be interviewed due to household refusal or absence. These households were replaced with reserved households in the sample.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaires for the survey were developed by the World Bank, with assistance from the survey firm, DATA. Comments were incorporated following the pilot tests and practice session/pretest.

    Cleaning operations

    Collected data was entered into a computer by using the customized MS Access data input software developed by Data Analysis and Technical Assistance (DATA). Once data entry was completed, two different techniques were employed to check consistency and validity of data as follows:

    1. Five (5%) percent of the filled-in questionnaire was checked against entered data to measure the transmission error or typos, and;
    2. A logical consistency checking technique was employed to identify inconsistencies using SPSS and or STATA software.
  17. W

    Proportion of population living below national poverty line, by sex and age

    • cloud.csiss.gmu.edu
    • data.gov.au
    • +1more
    csv
    Updated Dec 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australia (2019). Proportion of population living below national poverty line, by sex and age [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/proportion-of-population-living-below-national-poverty-line-by-sex-and-age
    Explore at:
    csv(130)Available download formats
    Dataset updated
    Dec 14, 2019
    Dataset provided by
    Australia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The most common poverty measures, including that used by the OECD, focus on income based approaches. One of the most common measures of income poverty is the proportion of households with income less than half median equivalised disposable household income (which is set as the poverty line); this is a relative income poverty measure as poverty is measured by reference to the income of others rather than in some absolute sense. Australia has one of the highest household disposable incomes in the world, which means that an Australian relative income poverty line is set at a high level of income compared to most other countries.

    OECD statistics on Australian poverty 2015-16 (based on ABS Survey of Income and Housing data and applying a poverty line of 50% of median income) determined the Australian poverty rate was over 25% before taxes and transfers, but falls around 12% after taxes and transfers. Though measuring poverty through application of solely an income measure is not considered comprehensive for an Australian context, however, it does demonstrate that the Australian welfare system more than halves the number of Australians that would otherwise be considered as at risk of living in poverty under that measure.
    It is important to consider a range of indicators of persistent disadvantage to understand poverty and hardship and its multidimensional nature. Different indicators point to different dimensions of poverty. While transient poverty is a problem, the experience of persistent poverty is of deeper concern, particularly where families experience intergenerational disadvantage and long-term welfare reliance. HILDA data from the Melbourne Institute of Applied Economic and Social Research shows the Distribution of number of years in poverty 2001–2015. The figure focuses on the longer term experience of working age adults and shows that while people do fall into poverty, only a small proportion of people are persistently poor.

  18. I

    Indonesia Average Monthly Poverty Line per Capita: Bali: Karangasem Regency

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Indonesia Average Monthly Poverty Line per Capita: Bali: Karangasem Regency [Dataset]. https://www.ceicdata.com/en/indonesia/poverty-line-by-regency/average-monthly-poverty-line-per-capita-bali-karangasem-regency
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2007 - Dec 1, 2018
    Area covered
    Indonesia
    Description

    Indonesia Average Monthly Poverty Line per Capita: Bali: Karangasem Regency data was reported at 311,321.000 IDR in 2018. This records an increase from the previous number of 301,720.000 IDR for 2017. Indonesia Average Monthly Poverty Line per Capita: Bali: Karangasem Regency data is updated yearly, averaging 231,430.500 IDR from Dec 2005 (Median) to 2018, with 14 observations. The data reached an all-time high of 311,321.000 IDR in 2018 and a record low of 120,248.000 IDR in 2005. Indonesia Average Monthly Poverty Line per Capita: Bali: Karangasem Regency data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Indonesia Premium Database’s Socio and Demographic – Table ID.GAE015: Poverty Line: by Regency.

  19. English Housing Survey: Fuel Poverty Dataset, 2018: Special Licence Access

    • beta.ukdataservice.ac.uk
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Department For Business (2025). English Housing Survey: Fuel Poverty Dataset, 2018: Special Licence Access [Dataset]. http://doi.org/10.5255/ukda-sn-8654-2
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    DataCitehttps://www.datacite.org/
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Energy Department For Business
    Description

    The English Housing Survey (EHS ) Fuel Poverty Datasets are comprised of fuel poverty variables derived from the EHS, and a number of EHS variables commonly used in fuel poverty reporting. The EHS is a continuous national survey commissioned by the Ministry of Housing, Community and Local Government (MHCLG) that collects information about people's housing circumstances and the condition and energy efficiency of housing in England.

    End User Licence and Special Licence Versions
    Similar to the main EHS, two versions of the Fuel Poverty dataset are available from 2014 onwards. The Special Licence version contains additional, more detailed, variables, and is therefore subject to more restrictive access conditions. Users should check the End User Licence version first to see whether it meeds their needs, before making an application for the Special Licence version.


    Fuel Poverty Dataset

    The fuel poverty dataset is comprised of fuel poverty variables derived from the English Housing Survey (EHS), and a number of EHS variables commonly used in fuel poverty reporting. The fieldwork for the EHS is carried out each financial year (between April and March). The fuel poverty datasets combine data from two consecutive financial years. Full information on the EHS survey is available at the https://www.gov.uk/government/collections/english-housing-survey">MHCLG EHS website and further information on Fuel Poverty and the EHS can be sought from FuelPoverty@beis.gov.uk and ehs@communities.gov.uk respectively. Guidance on use of EHS data provided by MHCLG should also be applied to the fuel poverty dataset.

    Further information may be found in the https://www.gov.uk/government/collections/fuel-poverty-statistics"> Annual Fuel Poverty Statistics Report: 2020 (2018 Data) on the gov.uk website.

    Latest edition information

    For the second edition (June 2021) the data file was replaced with a new version, with some errors corrected in the labelling of numeric values.

  20. D

    End child poverty - Poverty in your area 2016 and 2018

    • find.data.gov.scot
    • finddatagovscot.dtechtive.com
    • +1more
    docx
    Updated Mar 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deloitte Datathon 2018 (uSmart) (2018). End child poverty - Poverty in your area 2016 and 2018 [Dataset]. https://find.data.gov.scot/datasets/39185
    Explore at:
    docx(0.0976 MB)Available download formats
    Dataset updated
    Mar 14, 2018
    Dataset provided by
    Deloitte Datathon 2018 (uSmart)
    Description

    Part 3 out of 4 For more information, see: http://www.endchildpoverty.org.uk/poverty-in-your-area-2016/ Estimated rates of child poverty from 2016 and 2018 on the level of child poverty in each constituency, local authority and ward in the UK before and after housing costs. Data is split across 26 xlsx files. For more information, visit http://www.endchildpoverty.org.uk/poverty-in-your-area-2016/ and https://mss.carto.com/viz/064da52a-2edc-4b7b-a709-f3697a5928b0/public_map Visualisations on % children living in poverty can be found here: https://mss.carto.com/viz/064da52a-2edc-4b7b-a709-f3697a5928b0/public_map Estimated rates of child poverty from 2016 and 2018 on the level of child poverty in each constituency, local authority and ward in the UK before and after housing costs. Data is split across 26 xlsx files. For more information, visit http://www.endchildpoverty.org.uk/poverty-in-your-area-2016/ and https://mss.carto.com/viz/064da52a-2edc-4b7b-a709-f3697a5928b0/public_map

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate

Poverty Rate

Explore at:
csvAvailable download formats
Dataset updated
Oct 17, 2024
Dataset authored and provided by
Champaign County Regional Planning Commission
License

Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically

Description

This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

Search
Clear search
Close search
Google apps
Main menu