According to a survey from 2020, the coronavirus (COVID-19) crisis will increase female poverty worldwide. Globally, 247 million women aged 15 years and older will be living on less than 1.90 U.S. dollars per day in 2021, compared to 236 million men. The gender poverty gap is expected to increase by 2030 as women will still be the majority of the world's extreme poor.
The database (version August 2022) is built upon the released Global Subnational Atlas of Poverty (GSAP) (World Bank, 2021). In this database, we assemble a new panel dataset that provides different measures of inequality. This database is generated using household income and consumption surveys from the World Bank’s Global Monitoring Database (GMD), which underlie country official poverty statistics, and offers the most detailed subnational poverty data on a global scale to date. The Global Subnational Atlas of Poverty (GSAP) is produced by the World Bank’s Poverty and Equity Global Practice, coordinated by the Data for Goals (D4G) team, and supported by the six regional statistics teams in the Poverty and Equity Global Practice, and Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) at the World Bank. The Global Monitoring Database (GMD) is the World Bank’s repository of multitopic income and expenditure household surveys used to monitor global poverty and shared prosperity. The household survey data are typically collected by national statistical offices in each country, and then compiled, processed, and harmonized. The process is coordinated by the Data for Goals (D4G) team and supported by the six regional statistics teams in the Poverty and Equity Global Practice. Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) also contributed historical data from before 1990, and recent survey data from Luxemburg Income Studies (LIS). Selected variables have been harmonized to the extent possible such that levels and trends in poverty and other key sociodemographic attributes can be reasonably compared across and within countries over time. The GMD’s harmonized microdata are currently used in Poverty and Inequality Platform (PIP), World Bank’s Multidimensional Poverty Measures (WB MPM), the Global Database of Shared Prosperity (GDSP), and Poverty and Shared Prosperity Reports. Reference: World Bank. (2021). World Bank estimates based on data from the Global Subnational Atlas of Poverty, Global Monitoring Database. World Bank: Washington. https://datacatalog.worldbank.org/search/dataset/0042041
The share of the global population with access to electricity in 2022 was roughly 91 percent, up from 71.4 percent in 1990. South Sudan was the least electrified country worldwide, followed by Burundi.
Over the past 30 years, there has been an almost constant reduction in the poverty rate worldwide. Whereas nearly ** percent of the world's population lived on less than 2.15 U.S. dollars in terms of 2017 Purchasing Power Parity (PPP) in 1990, this had fallen to *** percent in 2022. This is even though the world's population was growing over the same period. However, there was a small increase in the poverty rate during the COVID-19 pandemic in 2020 and 2021, when thousands of people became unemployed overnight. Moreover, the rising cost of living in the aftermath of the pandemic and spurred by the Russian invasion of Ukraine in 2022 meant that many people were struggling to make ends meet. Poverty is a regional problem Poverty can be measured in relative and absolute terms. Absolute poverty concerns basic human needs such as food, clothing, shelter, and clean drinking water, whereas relative poverty looks at whether people in different countries can afford a certain living standard. Most countries that have a high percentage of their population living in absolute poverty, meaning that they are poor compared to international standards, are regionally concentrated. African countries are most represented among the countries in which poverty prevails the most. In terms of numbers, Sub-Saharan Africa and South Asia have the most people living in poverty worldwide. Inequality on the rise How wealth, or the lack thereof, is distributed within the global population and even within countries is very unequal. In 2022, the richest one percent of the world owned almost half of the global wealth, while the poorest 50 percent owned less than two percent in the same year. Within regions, Latin America had the most unequal distribution of wealth, but this phenomenon is present in all world regions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>World poverty rate for 2022 was <strong>48.00%</strong>, a <strong>0.6% decline</strong> from 2021.</li>
<li>World poverty rate for 2021 was <strong>48.60%</strong>, a <strong>1.8% decline</strong> from 2020.</li>
<li>World poverty rate for 2020 was <strong>50.40%</strong>, a <strong>4.1% increase</strong> from 2019.</li>
</ul>Poverty headcount ratio at $5.50 a day is the percentage of the population living on less than $5.50 a day at 2011 international prices. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Will all children be able to read by 2030? The ability to read with comprehension is a foundational skill that every education system around the world strives to impart by late in primary school—generally by age 10. Moreover, attaining the ambitious Sustainable Development Goals (SDGs) in education requires first achieving this basic building block, and so does improving countries’ Human Capital Index scores. Yet past evidence from many low- and middle-income countries has shown that many children are not learning to read with comprehension in primary school. To understand the global picture better, we have worked with the UNESCO Institute for Statistics (UIS) to assemble a new dataset with the most comprehensive measures of this foundational skill yet developed, by linking together data from credible cross-national and national assessments of reading. This dataset covers 115 countries, accounting for 81% of children worldwide and 79% of children in low- and middle-income countries. The new data allow us to estimate the reading proficiency of late-primary-age children, and we also provide what are among the first estimates (and the most comprehensive, for low- and middle-income countries) of the historical rate of progress in improving reading proficiency globally (for the 2000-17 period). The results show that 53% of all children in low- and middle-income countries cannot read age-appropriate material by age 10, and that at current rates of improvement, this “learning poverty” rate will have fallen only to 43% by 2030. Indeed, we find that the goal of all children reading by 2030 will be attainable only with historically unprecedented progress. The high rate of “learning poverty” and slow progress in low- and middle-income countries is an early warning that all the ambitious SDG targets in education (and likely of social progress) are at risk. Based on this evidence, we suggest a new medium-term target to guide the World Bank’s work in low- and middle- income countries: cut learning poverty by at least half by 2030. This target, together with improved measurement of learning, can be as an evidence-based tool to accelerate progress to get all children reading by age 10.
For further details, please refer to https://thedocs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poverty Headcount Ratio at Societal Poverty Lines: % of Population data was reported at 19.000 % in 2021. This records a decrease from the previous number of 20.900 % for 2020. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data is updated yearly, averaging 31.700 % from Dec 1990 (Median) to 2021, with 19 observations. The data reached an all-time high of 72.000 % in 1990 and a record low of 19.000 % in 2021. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s China – Table CN.World Bank.WDI: Social: Poverty and Inequality. The poverty headcount ratio at societal poverty line is the percentage of a population living in poverty according to the World Bank's Societal Poverty Line. The Societal Poverty Line is expressed in purchasing power adjusted 2017 U.S. dollars and defined as max($2.15, $1.15 + 0.5*Median). This means that when the national median is sufficiently low, the Societal Poverty line is equivalent to the extreme poverty line, $2.15. For countries with a sufficiently high national median, the Societal Poverty Line grows as countries’ median income grows.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jordan JO: Poverty Gap at National Poverty Lines: % data was reported at 3.600 % in 2010. This records an increase from the previous number of 2.600 % for 2008. Jordan JO: Poverty Gap at National Poverty Lines: % data is updated yearly, averaging 3.100 % from Dec 2008 (Median) to 2010, with 2 observations. The data reached an all-time high of 3.600 % in 2010 and a record low of 2.600 % in 2008. Jordan JO: Poverty Gap at National Poverty Lines: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Jordan – Table JO.World Bank: Poverty. Poverty gap at national poverty lines is the mean shortfall from the poverty lines (counting the nonpoor as having zero shortfall) as a percentage of the poverty lines. This measure reflects the depth of poverty as well as its incidence.; ; World Bank, Global Poverty Working Group. Data are compiled from official government sources or are computed by World Bank staff using national (i.e. country–specific) poverty lines.; ; This series only includes estimates that to the best of our knowledge are reasonably comparable over time for a country. Due to differences in estimation methodologies and poverty lines, estimates should not be compared across countries.
The database (version August 2022) is built upon the released Global Subnational Atlas of Poverty (GSAP) (World Bank, 2021). In this database, we assemble a new panel dataset that provides (headcount) poverty rates using the daily poverty lines of US $1.90, $3.20, and $5.50 (based on the revised 2011 Purchasing Power Parity (PPP) dollars). This database is generated using household income and consumption surveys from the World Bank’s Global Monitoring Database (GMD), which underlie country official poverty statistics, and offers the most detailed subnational poverty data on a global scale to date. The Global Subnational Atlas of Poverty (GSAP) is produced by the World Bank’s Poverty and Equity Global Practice, coordinated by the Data for Goals (D4G) team, and supported by the six regional statistics teams in the Poverty and Equity Global Practice, and Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) at the World Bank. The Global Monitoring Database (GMD) is the World Bank’s repository of multitopic income and expenditure household surveys used to monitor global poverty and shared prosperity. The household survey data are typically collected by national statistical offices in each country, and then compiled, processed, and harmonized. The process is coordinated by the Data for Goals (D4G) team and supported by the six regional statistics teams in the Poverty and Equity Global Practice. Global Poverty & Inequality Data Team (GPID) in Development Economics Data Group (DECDG) also contributed historical data from before 1990, and recent survey data from Luxemburg Income Studies (LIS). Selected variables have been harmonized to the extent possible such that levels and trends in poverty and other key sociodemographic attributes can be reasonably compared across and within countries over time. The GMD’s harmonized microdata are currently used in Poverty and Inequality Platform (PIP), World Bank’s Multidimensional Poverty Measures (WB MPM), the Global Database of Shared Prosperity (GDSP), and Poverty and Shared Prosperity Reports. Reference: World Bank. (2021). World Bank estimates based on data from the Global Subnational Atlas of Poverty, Global Monitoring Database. World Bank: Washington. https://datacatalog.worldbank.org/search/dataset/0042041
Over the past three decades, the number of people living on less than 2.15 U.S. dollars a day in terms of 2017 Purchasing Power Parities has fallen remarkably. Whereas around two billion people lived on less than this amount a day in 1990, the number had fallen to around 711 million by 2022. Although much progress has been made and this figure is falling, this number increased slightly in light of the COVID-19 pandemic, going from around 689 million in 2019 to 762 million in 2020 and 749 million by 2021.
This dataset was uploaded to support the Data Science For Good Kiva crowdfunding challenge. In particular, in uploading this dataset, I intend to assist with mapping subnational locations in the Kiva dataset to more accurate geocodes.
This dataset contains poverty data at the administrative unit level 1, based on national poverty line(s). Administrative unit level 1 refers to the highest subnational unit level (examples include ‘state’, ‘governorate’, ‘province’). This dataset also provides data and methodology for distinguishing between poverty rates in urban and rural regions.
This dataset includes one main .csv file: Subnational-PovertyData.csv, which includes a set of poverty indicators at the national and subnational level between the years 1996-2013. Many countries are missing data for multiple years, and no country has data for the years 1997-1999.
It also includes three metadata .csv files:
1. Subnational-PovertyCountry.csv
, which describes the country codes and subregions.
2.Subnational-PovertySeries.csv
, which describes the three series indicators for national, urban, and rural poverty headcount ratios. This metadata file also including limitations, statistical methodologies, and development relevance for these metrics.
3. Subnational-Povertyfootnote.csv
, which describes the years and sources for all of the country-series combinations.
This dataset is provided openly by the World Bank. Individual sources for the different data series are available in Subnational-Povertyfootnote.csv.
This dataset is classified as Public under the Access to Information Classification Policy. Users inside and outside the World Bank can access this dataset. It is licensed under CC-BY 4.0.
Type: Time Series Topics: Economic Growth Poverty Economy Coverage: IBRD Languages Supported: English Number of Economies: 60 Geographical Coverage: World Access Options: Download, Query Tool Temporal Coverage: 1996 - 2013 Last Updated: April 27, 2015
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chile Poverty Statistics: Female data was reported at 836,009.000 Person in 2017. This records a decrease from the previous number of 1,115,809.000 Person for 2015. Chile Poverty Statistics: Female data is updated yearly, averaging 1,715,728.500 Person from Dec 2006 (Median) to 2017, with 6 observations. The data reached an all-time high of 2,455,020.000 Person in 2006 and a record low of 836,009.000 Person in 2017. Chile Poverty Statistics: Female data remains active status in CEIC and is reported by Ministry of Social Development. The data is categorized under Global Database’s Chile – Table CL.H020: National Socio-Economic Characterization Survey: Poverty Situation.
The global Multidimensional Poverty Index (MPI) is an international measure of acute poverty covering over 100 developing countries. It complements traditional income-based poverty measures by capturing the severe deprivations that each person faces at the same time with respect to education, health and living standards.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chile Poverty Statistics: Los Ríos data was reported at 44,984.000 Person in 2017. This records a decrease from the previous number of 61,883.000 Person for 2015. Chile Poverty Statistics: Los Ríos data is updated yearly, averaging 101,168.000 Person from Dec 2006 (Median) to 2017, with 6 observations. The data reached an all-time high of 163,021.000 Person in 2006 and a record low of 44,984.000 Person in 2017. Chile Poverty Statistics: Los Ríos data remains active status in CEIC and is reported by Ministry of Social Development. The data is categorized under Global Database’s Chile – Table CL.H020: National Socio-Economic Characterization Survey: Poverty Situation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mexico Multidimensional Poverty Headcount Ratio: World Bank: % of total population data was reported at 1.700 % in 2022. This records a decrease from the previous number of 2.600 % for 2020. Mexico Multidimensional Poverty Headcount Ratio: World Bank: % of total population data is updated yearly, averaging 2.900 % from Dec 2010 (Median) to 2022, with 7 observations. The data reached an all-time high of 5.700 % in 2010 and a record low of 1.700 % in 2022. Mexico Multidimensional Poverty Headcount Ratio: World Bank: % of total population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Mexico – Table MX.World Bank.WDI: Social: Poverty and Inequality. The multidimensional poverty headcount ratio (World Bank) is the percentage of a population living in poverty according to the World Bank's Multidimensional Poverty Measure. The Multidimensional Poverty Measure includes three dimensions – monetary poverty, education, and basic infrastructure services – to capture a more complete picture of poverty.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana Multidimensional Poverty Headcount Ratio: World Bank: % of total population data was reported at 32.800 % in 2016. This records a decrease from the previous number of 33.200 % for 2012. Ghana Multidimensional Poverty Headcount Ratio: World Bank: % of total population data is updated yearly, averaging 33.000 % from Dec 2012 (Median) to 2016, with 2 observations. The data reached an all-time high of 33.200 % in 2012 and a record low of 32.800 % in 2016. Ghana Multidimensional Poverty Headcount Ratio: World Bank: % of total population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank.WDI: Social: Poverty and Inequality. The multidimensional poverty headcount ratio (World Bank) is the percentage of a population living in poverty according to the World Bank's Multidimensional Poverty Measure. The Multidimensional Poverty Measure includes three dimensions – monetary poverty, education, and basic infrastructure services – to capture a more complete picture of poverty.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multidimensional Poverty Index (MPI): countries where the MPI is below 0.6. Pixels with a value lower than the specified threshold (0.6) were given a value of 1 (YES response)
The 2020 Global MPI data and publication "Charting pathways out of multidimensional poverty: Achieving the SDGs" released on 16 July 2020 by the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford and the Human Development Report Office of the United Nations Development Programme (UNDP). The global MPI measures the complexities of poor people’s lives, individually and collectively, each year. This report focuses on how multidimensional poverty has declined. It provides a comprehensive picture of global trends in multidimensional poverty, covering 5 billion people. It probes patterns between and within countries and by indicator, showcasing different ways of making progress. Together with data on the $1.90 a day poverty rate, the trends monitor global poverty in different forms.
Data revision: 2020-07-16
Contact points:
Contact: Admir Jahic UNDP
Metadata contact: OCB Environment FAO-UN
Resource constraints:
license
Online resources:
Global Multidimensional Poverty Index
Charting pathways out of multidimensional poverty: Achieving the SDGs
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chile Poverty Statistics: 60 & Over data was reported at 155,839.000 Person in 2017. This records a decrease from the previous number of 202,231.000 Person for 2015. Chile Poverty Statistics: 60 & Over data is updated yearly, averaging 301,505.000 Person from Dec 2006 (Median) to 2017, with 6 observations. The data reached an all-time high of 478,321.000 Person in 2006 and a record low of 155,839.000 Person in 2017. Chile Poverty Statistics: 60 & Over data remains active status in CEIC and is reported by Ministry of Social Development. The data is categorized under Global Database’s Chile – Table CL.H020: National Socio-Economic Characterization Survey: Poverty Situation.
The Poverty Mapping Project: Global Subnational Prevalence of Child Malnutrition data set consists of estimates of the percentage of children with weight-for-age z-scores that are more than two standard deviations below the median of the NCHS/CDC/WHO International Reference Population. Data are reported for the most recent year with subnational information available at the time of development. The data products include a shapefile (vector data) of percentage rates, grids (raster data) of rates (per thousand in order to preserve precision in integer format), the number of children under five (the rate denominator), and the number of underweight children under five (the rate numerator), and a tabular data set of the same and associated data. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.
According to a survey from 2020, the coronavirus (COVID-19) crisis will increase female poverty worldwide. Globally, 247 million women aged 15 years and older will be living on less than 1.90 U.S. dollars per day in 2021, compared to 236 million men. The gender poverty gap is expected to increase by 2030 as women will still be the majority of the world's extreme poor.