18 datasets found
  1. Share of the population living in poverty by race in the United States...

    • statista.com
    • tokrwards.com
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of the population living in poverty by race in the United States 1959-2023 [Dataset]. https://www.statista.com/statistics/1225017/poverty-share-by-race-race-us/
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the U.S., the share of the population living in poverty fluctuated significantly throughout the six decades between 1987 and 2023. In 2023, the poverty level across all races and ethnicities was 11.1 percent. Black Americans have been the ethnic group with the highest share of their population living in poverty almost every year since 1974. In 1979 alone, Black poverty was well over double the national average, and over four times the poverty rate in white communities; in 1982, almost 48 percent of the Black population lived in poverty. Although poverty rates have been trending downward across all ethnic groups, 17.8 percent of Black Americans and 18.9 percent of American Indian and Alaskan Natives still lived below the poverty line in 2022.

  2. U.S. poverty rate 1990-2023

    • statista.com
    • thefarmdosupply.com
    • +1more
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. poverty rate 1990-2023 [Dataset]. https://www.statista.com/statistics/200463/us-poverty-rate-since-1990/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.

  3. a

    Persistent Poverty - Tracts

    • usfs.hub.arcgis.com
    Updated Sep 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2022). Persistent Poverty - Tracts [Dataset]. https://usfs.hub.arcgis.com/maps/usfs::persistent-poverty-tracts
    Explore at:
    Dataset updated
    Sep 30, 2022
    Dataset authored and provided by
    U.S. Forest Service
    Area covered
    Description

    Unpublished data product not for circulation Persistent Poverty tracts*Persistent poverty area and enduring poverty area measures with reference year 2015-2019 are research measures only. The ERS offical measures are updated every ten years. The next updates will use 1960 through 2000 Decennial Census data and 2007-2011 and 2017-2021 5-year ACS estimates. The updates will take place following the Census Bureau release of the 2017-2021 estimates (anticipated December 2022).A reliability index is calculated for each poverty rate (PctPoor) derived using poverty count estimates and published margins of error from the 5-yr ACS. If the poverty rate estimate has low reliability (=3) AND the upper (PctPoor + derived MOE) or lower (PctPoor - derived MOE) bounds of the MOE adjusted poverty rate would change the poverty status of the estimate (high = 20.0% or more; extreme = 40.0% or more) then the county/tract type is coded as "N/A". If looking at metrics named "PerPov0711" and PerPov1519" ERS says: The official measure ending in 2007-11 included data from 1980. The research measure ending in 2015-19 drops 1980 and begins instead with 1990. There were huge differences in geographic coverage of census tracts and data quality between 1980 and 1990, namely "because tract geography wasn’t assigned to all areas of the country until the 1990 Decennial Census. Last date edited 9/1/2022Variable NamesVariable Labels and ValuesNotesGeographic VariablesGEO_ID_CTCensus download GEOID when downloading county and tract data togetherSTUSABState Postal AbbreviationfipsCounty FIPS code, in numericCountyNameArea Name (county, state)TractNameArea Name (tract, county, state)TractCensus Tract numberRegionCensus region numeric code 1 = Northeast 2 = Midwest 3 = South 4 = Westsubreg3ERS subregions 1 = Northeast and Great Lakes 2 = Eastern Metropolitan Belt 3 = Eastern and Interior Uplands 4 = Corn Belt 5 = Southeastern Coast 6 = Southern Coastal Plain 7 = Great Plains 8 = Rio Grande and Southwest 9 = West, Alaska and HawaiiMetNonmet2013Metro and nonmetro county code 0 = nonmetro county 1 = metro countyBeale2013ERS Rural-urban Continuum Code 2013 (counties) 1 = counties in metro area of 1 million population or more 2 = counties in metro area of 250,000 to 1 million population 3 = counties in metro area of fewer than 250,000 population 4 = urban population of 20,000 or more, adjacent to a metro area 5 = urban population of 20,000 or more, not adjacent to a metro area 6 = urban population of 2,500 to 19,999, adjacent to a metro area 7 = urban population of 2,500 to 19,999, not adjacent to a metro area 8 = completely rural or less than 2,500, adjacent to a metro area 9 = completely rural or less than 2,500, not adjacent to a metro areaRUCA_2010Rural Urban Commuting Areas, primary code (census tracts) 1 = Metropolitan area core: primary flow within an urbanized area (UA) 2 = Metropolitan area high commuting: primary flow 30% or more to a UA 3 = Metropolitan area low commuting: primary flow 10% to 30% to a UA 4 = Micropolitan area core: primary flow within an Urban Cluster of 10,000 to 49,999 (large UC) 5 = Micropolitan high commuting: primary flow 30% or more to a large UC 6 = Micropolitan low commuting: primary flow 10% to 30% to a large UC 7 = Small town core: primary flow within an Urban Cluster of 2,500 to 9,999 (small UC) 8 = Small town high commuting: primary flow 30% or more to a small UC 9 = Small town low commuting: primary flow 10% to 30% to a small UC 10 = Rural areas: primary flow to a tract outside a UA or UC 99 = Not coded: Census tract has zero population and no rural-urban identifier informationBNA01Census tract represents block numbering areas; BNAs are small statistical subdivisions of a county for numbering and grouping blocks in nonmetropolitan counties where local committees have not established tracts. 0 = not a BNA tract 1 = BNA tractPoverty Areas MeasuresHiPov60Poverty Rate greater than or equal to 20.0% 1960 (counties only) -1 = N/A 0 = PctPoor60 < 20.0% 1 = PctPoor60 >= 20.0%HiPov70Poverty Rate greater than or equal to 20.0% 1970 -1 = N/A 0 = PctPoor70 < 20.0% 1 = PctPoor70 >= 20.0%HiPov80Poverty Rate greater than or equal to 20.0% 1980 -1 = N/A 0 = PctPoor80 < 20.0% 1 = PctPoor80 >= 20.0%HiPov90Poverty Rate greater than or equal to 20.0% 1990 -1 = N/A 0 = PctPoor90 < 20.0% 1 = PctPoor90 >= 20.0%HiPov00Poverty Rate greater than or equal to 20.0% 2000 -1 = N/A 0 = PctPoor00 < 20.0% 1 = PctPoor00 >= 20.0%HiPov0711Poverty Rate greater than or equal to 20.0% 2007-11 ACS -1 = N/A 0 = PctPoor0711 < 20.0% 1 = PctPoor0711 >= 20.0%HiPov1519Poverty Rate greater than or equal to 20.0% 2015-19 ACS -1 = N/A 0 = PctPoor1519 < 20.0% 1 = PctPoor1519 >= 20.0%ExtPov60Poverty Rate greater than or equal to 40.0% 1960 (counties only) -1 = N/A 0 = PctPoor60 < 40.0% 1 = PctPoor60 >= 40.0%ExtPov70Poverty Rate greater than or equal to 40.0% 1970 -1 = N/A 0 = PctPoor70 < 40.0% 1 = PctPoor70 >= 40.0%ExtPov80Poverty Rate greater than or equal to 40.0% 1980 -1 = N/A 0 = PctPoor80 < 40.0% 1 = PctPoor80 >= 40.0%ExtPov90Poverty Rate greater than or equal to 40.0% 1990 -1 = N/A 0 = PctPoor90 < 40.0% 1 = PctPoor90 >= 40.0%ExtPov00Poverty Rate greater than or equal to 40.0% 2000 -1 = N/A 0 = PctPoor00 < 40.0% 1 = PctPoor00 >= 40.0%ExtPov0711Poverty Rate greater than or equal to 40.0% 2007-11 ACS -1 = N/A 0 = PctPoor0711 < 40.0% 1 = PctPoor0711 >= 40.0%ExtPov1519Poverty Rate greater than or equal to 40.0% 2015-19 ACS -1 = N/A 0 = PctPoor1519 < 40.0% 1 = PctPoor1519 >= 40.0%PerPov90Official ERS Measure: Persistent Poverty 1990: poverty rate >= 20.0% in 1960, 1970, 1980, and 1990 (counties only) May not match previously published versions due to changes in geographic normalization procedures. -1 = N/A 0 = poverty rate not >= 20.0% in 1960, 1970, 1980, and 1990 1 = poverty rate >= 20.0% in 1960, 1970, 1980, and 1990PerPov00Official ERS Measure: Persistent Poverty 2000: poverty rate >= 20.0% in 1970, 1980, 1990, and 2000May not match previously published versions due to changes in geographic normalization procedures. -1 = N/A 0 = poverty rate not >= 20.0% in 1970, 1980, 1990, and 2000 1 = poverty rate >= 20.0% in 1970, 1980, 1990, and 2000PerPov0711Official ERS Measure: Persistent Poverty 2007-11: poverty rate >= 20.0% in 1980, 1990, 2000, and 2007-11May not match previously published versions due to changes in geographic normalization procedures and -1 = N/A application of reliability criteria. 0 = poverty rate not >= 20.0% in 1980, 1990, 2000, and 2007-11 1 = poverty rate >= 20.0% in 1980, 1990, 2000, and 2007-11PerPov1519Research Measure Only: Persistent Poverty 2015-19: poverty rate >= 20.0% in 1990, 2000, 2007-11, and 2015May not match previously published versions due to changes in geographic normalization procedures and -1 = N/A application of reliability criteria. 0 = poverty rate not >= 20.0% in 1990, 2000, 2007-11, and 2015-19 1 = poverty rate >= 20.0% in 1990, 2000, 2007-11, and 2015-19EndurePov0711Official ERS Measure: Enduring Poverty 2007-11: poverty rate >= 20.0% for at least 5 consecutive time periods up-to and including 2007-11 -1 = N/A 0 = Poverty Rate not >=20.0% in 1970, 1980, 1990, 2000, and 2007-11 1 = poverty rate >= 20.0% in 1970, 1980, 1990, 2000, and 2007-11 2 = poverty rate >=20.0% in 1960, 1970, 1980, 1990, 2000, and 2007-11 (counties only)EndurePov1519Research Measure Only: Enduring Poverty 2015-19: poverty rate >= 20.0% for at least 5 consecutive time periods, up-to and including 2015-19 -1 = N/A 0 = Poverty Rate not >=20.0% in 1980, 1990, 2000, 2007-11, and 2015-19 1 = poverty rate >= 20.0% in 1980, 1990, 2000, 2007-11, and 2015-19 2 = poverty rate >= 20.0% in 1970, 1980, 1990, 2000, 2007-11, and 2015-19 3 = poverty rate >=20.0% in 1960, 1970, 1980, 1990, 2000, 2007-11, and 2015-19 (counties only)Additional Notes: *In the combined data tab each variable ends with a 'C' for county and a 'T' for tractThe spreadsheet was joined to Esri's Living Atlas Social Vulnerability Tract Data (CDC) and therefore contains the following information as well: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) has created a tool to help emergency response planners and public health officials identify and map the communities that will most likely need support before, during, and after a hazardous event. The Social Vulnerability Index (SVI) uses U.S. Census data to determine the social vulnerability of every county and tract. CDC SVI ranks each county and tract on 15 social factors, including poverty, lack of vehicle access, and crowded housing, and groups them into four related themes:SocioeconomicHousing Composition and DisabilityMinority Status and LanguageHousing and TransportationThis feature layer visualizes the 2018 overall SVI for U.S. counties and tracts. Social Vulnerability Index (SVI) indicates the relative vulnerability of every U.S. county and tract.15 social factors grouped into four major themes | Index value calculated for each county for the 15 social factors, four major themes, and the overall rank

  4. USDA Economic Research Service Persistent Poverty

    • usfs.hub.arcgis.com
    Updated Sep 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2022). USDA Economic Research Service Persistent Poverty [Dataset]. https://usfs.hub.arcgis.com/maps/274c5841f9d54b2a93dc7e6d9f653993
    Explore at:
    Dataset updated
    Sep 30, 2022
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    Area covered
    Description

    Poverty Area MeasuresThis data product provides poverty area measures for counties across 50 States and Washington DC. The measures include indicators of high poverty areas, extreme poverty areas, persistent poverty areas, and enduring poverty areas for Decennial Census years 1960–2000 and for American Community Survey (ACS) 5-year periods spanning both 2007–11 and 2015–19.HighlightsThis data product uniquely provides poverty area measures at the census-tract level for decennial years 1970 through 2000 and 5-year periods spanning 2007–11 and 2015–19.The poverty area measure—enduring poverty—is introduced, which captures the entrenchment of high poverty in counties for Decennial Census years 1960–2000 and for ACS 5-year periods spanning 2007–11 and 2015–19. The same is available for census tracts beginning in 1970.High and extreme poverty area measures are provided for various data years, offering end-users the flexibility to adjust persistent poverty area measures to meet their unique needs.All measures are geographically standardized to allow for direct comparison over time and for census tracts within county analysis.Diverse geocoding is provided, which can be used for mapping/GIS applications, to link to supplemental data (e.g., USDA, Economic Research Service’s Atlas of Rural and Small-Town America), and to explore various spatial categories (e.g., regions and metro/nonmetro status). DefinitionsHigh poverty: areas with a poverty rate of 20.0 percent or more in a single time period.Extreme poverty: areas with a poverty rate of 40.0 percent or more in a single time period.Persistent poverty: areas with a poverty rate of 20.0 percent or more for 4 consecutive time periods, about 10 years apart, spanning approximately 30 years (baseline time period plus 3 evaluation time periods).Enduring poverty: areas with a poverty rate of 20.0 percent or more for at least 5 consecutive time periods, about 10 years apart, spanning approximately 40 years or more (baseline time period plus four or more evaluation time periods).Additional information about the measures can be found in the downloadable Excel file, which includes the documentation, data, and codebook for the poverty area measures (county and tract).The next update to this data product—planned for early 2023—is expected to include the addition of poverty area measures for the 5-year period 2017–21.Data SetLast UpdatedNext UpdatePoverty area measures (in CSV format)11/10/2022Poverty area measures11/10/2022Poverty Area MeasuresOverviewBackground and UsesERS's Legacy of Poverty Area MeasurementDocumentationDescriptions and MapsLast updated: Thursday, November 10, 2022For more information, contact: Tracey Farrigan and Austin SandersRecommended CitationU.S. Department of Agriculture, Economic Research Service. Poverty Area Measures, November 2022.

  5. South Africa Poverty rate at national poverty line

    • knoema.com
    csv, json, sdmx, xls
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2025). South Africa Poverty rate at national poverty line [Dataset]. https://knoema.com/atlas/South-Africa/Poverty-rate-at-national-poverty-line
    Explore at:
    json, xls, csv, sdmxAvailable download formats
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2005 - 2014
    Area covered
    South Africa
    Variables measured
    Poverty headcount ratio at national poverty line
    Description

    Poverty rate at national poverty line of South Africa went up by 4.32% from 53.2 % in 2010 to 55.5 % in 2014. Since the 6.76% drop in 2008, poverty rate at national poverty line dropped by 10.63% in 2014. National poverty rate is the percentage of the population living below the national poverty line. National estimates are based on population-weighted subgroup estimates from household surveys.

  6. Data from: Reassessing the "Race to the Bottom" in State Welfare Policy

    • icpsr.umich.edu
    • doi.org
    Updated Mar 26, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berry, William D.; Fording, Richard C.; Hanson, Russell L. (2008). Reassessing the "Race to the Bottom" in State Welfare Policy [Dataset]. http://doi.org/10.3886/ICPSR01294.v1
    Explore at:
    Dataset updated
    Mar 26, 2008
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Berry, William D.; Fording, Richard C.; Hanson, Russell L.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/1294/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/1294/terms

    Area covered
    United States
    Description

    On the assumption that poor people migrate to obtain better welfare benefits, the magnet hypothesis predicts that a state's poverty rate increases when its welfare benefit rises faster than benefits in surrounding states. The benefit competition hypothesis proposes that states lower welfare benefits to avoid attracting the poor from neighboring states. Previous investigations, which yield support for these propositions, suffer from weaknesses in model specification and methodology. We correct these deficiencies in a simultaneous equation model including a state's poverty rate and its benefit level for AFDC (Aid to Families with Dependent Children) as endogenous variables. We estimate the model using pooled annual data for the American states from 1960 to 1990, and find that a state's poverty rate does not jump significantly when its welfare payments outpace benefits in neighboring states. Neither is there any evidence of vigorous benefit competition among states. States respond to decreases in neighboring states.

  7. Resident population in California 1960-2023

    • thefarmdosupply.com
    • statista.com
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Veera Korhonen (2025). Resident population in California 1960-2023 [Dataset]. https://www.thefarmdosupply.com/?_=%2Ftopics%2F11689%2Fcalifornia%2F%23RslIny40YoL1bbEgyeyUHEfOSI5zbSLA
    Explore at:
    Dataset updated
    Mar 6, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Veera Korhonen
    Area covered
    California
    Description

    In 2023, the resident population of California was 38.97 million. This is a slight decrease from the previous year, with 39.03 million people in 2022. This makes it the most populous state in the U.S. Californian demographics Along with an increase in population, California’s gross domestic product (GDP) has also been increasing, from 1.7 trillion U.S. dollars in 2000 to 3.23 trillion U.S. dollars in 2023. In the same time period, the per-capita personal income has almost doubled, from 33,403 U.S. dollars in 2000 to 77,339 U.S. dollars in 2022. In 2023, the majority of California’s resident population was Hispanic or Latino, although the number of white residents followed as a close second, with Asian residents making up the third-largest demographic in the state. The dark side of the Golden State While California is one of the most well-known states in the U.S., is home to Silicon Valley, and one of the states where personal income has been increasing over the past 20 years, not everyone in California is so lucky: In 2023, the poverty rate in California was about 12 percent, and the state had the fifth-highest rate of homelessness in the country during that same year, with an estimated 46 homeless people per 10,000 of the population.

  8. Social Correlates of Official Index Crime Rates for States, SMSAs, and...

    • search.gesis.org
    Updated Feb 16, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS search (2021). Social Correlates of Official Index Crime Rates for States, SMSAs, and Cities [United States]: A Macro-Level Dataset for 1950, 1960, 1970, and 1980 - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR06151
    Explore at:
    Dataset updated
    Feb 16, 2021
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    GESIS search
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de439481https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de439481

    Area covered
    United States
    Description

    Abstract (en): These data provide official index crime rates and social and economic indicators of crime rates at three levels of aggregation (city, state, and metropolitan areas) for four decennial years: 1950, 1960, 1970, and 1980. Information is provided on Uniform Crime Reports murder, rape, robbery, aggravated assault, burglary, larceny theft, and vehicle theft rates per 100,000 population. Social and economic indicators include percent black population, percent divorced males, the mean and median family incomes, families below the poverty line, and percent unemployed for each area. The availability of the data for the crime rates in 1980 determined the geographic locations included in the data collection. Data from earlier years do not exist for all geographic locations for which data were available in 1980. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Performed consistency checks.; Standardized missing values.; Checked for undocumented or out-of-range codes.. 2006-01-18 File CB6151.ALL.PDF was removed from any previous datasets and flagged as a study-level file, so that it will accompany all downloads. Funding insitution(s): National Science Foundation (SES8217865). The codebook is provided as a Portable Document Format (PDF) file. The PDF file format was developed by Adobe Systems Incorporated and can be accessed using PDF reader software, such as the Adobe Acrobat Reader. Information on how to obtain a copy of the Acrobat Reader is provided through the ICPSR Website on the Internet.

  9. World Bank Indicators (1960‑Present)

    • kaggle.com
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    George DiNicola (2025). World Bank Indicators (1960‑Present) [Dataset]. https://www.kaggle.com/datasets/georgejdinicola/world-bank-indicators
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 29, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    George DiNicola
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Overview

    This dataset provides a comprehensive collection of time series data sourced from the World Bank Open Data Platform, covering a wide range of global indicators from 1960 to the most recently published year. It includes economic, social, environmental, and demographic metrics, making it an ideal resource for researchers, data scientists, and policymakers interested in global development trends, economic forecasting, or socio-economic analysis.

    A tutorial on how to combined the dataset topics together into one large dataset can be found here

    Why this Dataset?

    My motivation for this project was to curate a high-quality collection of datasets for World Bank indicators organized by topics and structured in time-series, making them more accessible for data science projects. Since the World Bank’s Kaggle datasets have not been updated since 2019 https://www.kaggle.com/organizations/theworldbank, I saw an opportunity to provide more current data for the data analysis community.

    Dataset Collection Contents

    This collection brings together more than 800 World Bank indicators organized into 18 topic‑specific CSV files. Each file is structured as a country‑year panel: every row represents a unique combination of year (1960‑present) and ISO‑3 country code, while the columns hold the topic’s indicators.

    The collection includes datasets with a variety of indicators, such as: - Economic Metrics: GDP growth (%), GDP per capita, consumer price inflation, merchandise trade, gross capital formation, and more.
    - Social Metrics: School enrollment (primary, secondary, tertiary), infant mortality rate, maternal mortality rate, poverty headcount, and more.
    - Environmental Metrics: Forest area, renewable energy consumption, food production indices, and more.
    - Demographic Metrics: Urban population, life expectancy, net migration, and more.

    Usage

    This dataset is ideal for a variety of applications, including: - Economic forecasting and trend analysis (e.g., GDP growth, inflation).
    - Socio-economic studies (e.g., education, health, poverty).
    - Environmental impact analysis (e.g., renewable energy adoption).
    - Demographic research (e.g., population trends, migration).

    Topic datasets can be merged with each other using year and country code. This tutorial with notebook code can help you get started quickly.

    Collection Methodology

    The data is collected via a custom software application that discovers and groups high-quality indicators with rules-based logic & artificial intelligence, generates metadata, and performs ETL for the data from the World Bank API. The result is a clean, up‑to‑date collection of World Bank indicators in time-series format that is ready for analysis—no manual downloads or data wrangling required.

    Modifications

    The original World Bank data has been aggregated and transformed for ease of use. Missing values have been preserved as provided by the World Bank, and no significant transformations have been applied beyond formatting and aggregation into a single file.

    Source & Attribution

    The World Bank: World Development Indicators

    This dataset is publicly available and sourced from the World Bank Open Data Platform and is made available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. When using this data, please attribute the World Bank as follows: "Data sourced from the World Bank, licensed under CC BY 4.0." For more details on the World Bank’s terms of use, visit: https://www.worldbank.org/en/about/legal/terms-of-use-for-datasets.

    License

    This dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Feel free to use this data in Kaggle notebooks, academic research, or policy analysis. If you create a derived dataset or analysis, I encourage you to share it with the Kaggle community.

  10. Death rate in deaths per 1,000 inhabitants in Chad 1960-2023

    • statista.com
    • thefarmdosupply.com
    Updated Jul 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2024). Death rate in deaths per 1,000 inhabitants in Chad 1960-2023 [Dataset]. https://www.statista.com/topics/4878/chad/
    Explore at:
    Dataset updated
    Jul 3, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Area covered
    Chad
    Description

    In 2023, the death rate in deaths per 1,000 inhabitants in Chad stood at 11.03. Between 1960 and 2023, the figure dropped by 14.54, though the decline followed an uneven course rather than a steady trajectory.

  11. World Bank - Age and Population

    • hub.arcgis.com
    Updated Jan 11, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2012). World Bank - Age and Population [Dataset]. https://hub.arcgis.com/datasets/5b39485c49c44e6b84af126478a4930f_2/data?geometry=-180%2C-89.982%2C180%2C62.747
    Explore at:
    Dataset updated
    Jan 11, 2012
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    Area covered
    Description

    This map service, derived from World Bank data, shows various characteristics of the Health topic. The World Bank Group provides financing, state-of-the-art analysis, and policy advice to help countries expand access to quality, affordable health care; protects people from falling into poverty or worsening poverty due to illness; and promotes investments in all sectors that form the foundation of healthy societies.Age Dependency Ratio: Age dependency ratio is the ratio of dependents--people younger than 15 or older than 64--to the working-age population--those ages 15-64. Data are shown as the proportion of dependents per 100 working-age population. Data from 1960 – 2012.Age Dependency Ratio Old: Age dependency ratio, old, is the ratio of older dependents--people older than 64--to the working-age population--those ages 15-64. Data are shown as the proportion of dependents per 100 working-age population. Data from 1960 – 2012.Birth/Death Rate: Crude birth/death rate indicates the number of births/deaths occurring during the year, per
    1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration. Data spans from 1960 – 2008.Total Fertility: Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with current age-specific fertility rates. Data shown is for 1960 - 2008.Population Growth: Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage.
    Population is based on the de facto definition of population, which
    counts all residents regardless of legal status or citizenship--except
    for refugees not permanently settled in the country of asylum, who are
    generally considered part of the population of the country of origin. Data spans from 1960 – 2009.Life Expectancy: Life expectancy at birth indicates the number of years a newborn infant
    would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life. Data spans from 1960 – 2008.Population Female: Female population is the percentage of the population that is female. Population is based on the de facto definition of population. Data from 1960 – 2009.For more information, please visit: World Bank Open Data. _Other International User Community content that may interest you World Bank World Bank Age World Bank Health

  12. e

    Social Change and Violent Crime - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Apr 4, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Social Change and Violent Crime - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/f352d183-5221-59c1-9b50-5517e9108d6c
    Explore at:
    Dataset updated
    Apr 4, 2016
    Description

    The research project is a subproject of the research association “Strengthening of integration potentials within a modern society” (Scientific head: Prof. Dr. Wilhelm Heitmeyer, Bielefeld) which contains 17 subprojects and is supported by the ministry of education and research. In almost all the economically highly developed countries violent crime increased significantly in the second part of the last century - in contrast to the long term trend of decline of individual (non-governmental) violence since the beginning of modern times. The authors develop an explanatory approach for these facts which is inspired mainly by Norbert Elias´s civilization theory and Emil Durkheim´s theory on society. Detailed time series on the development of different forms of violent crime are presented and set in relation with certain aspects of economic and social structural changes in three countries and also refer to the changes in integration of modern societies. The analysis deals especially with effectivity and legitimacy of the governmental monopoly of violence, the public beneficial security and power system, forms of building social capital, economic and social inequality, precarity of employment, different aspects of increasing economization of society, changes in family structures and usage of mass media and modern communication technologies. Register of tables in HISTAT: A: Crime statistics A.01 Frequency of types of crimes in different countries (1953-2000) A.02 Suspects by crimes of 100.000 inhabitants of Germany, England and Sweden (1955-1998) A.03 Murders, manslaughter and intentional injuries by other persons by sex of 100.000 persons after the statistics of causes of death (1953-2000) A.04 Clearance rate by types of crimes in Germany, England and Sweden (1953-1997) A.05 Prisoners of 100.000 inhabitants of Germany, Great Britain and Sweden (1950-2000) B: Key indicators for economic development in Germany, Great Britain, Sweden and the USA B1: Data on the overall economic framework B1.01 Percent changes in the real GDP per capita in purchasing power parities (1956-1987) B1.02 Percent changes in GDP per capita in prices from 2000 (1955-1998) B1.03 GDP of Germany, Sweden and the United Kingdom in purchasing power parities in percent og the US GDP (1950-1992) B1.04 Labor productivity index for different countries, base: USA 1996 = 100 (1950-1999) B1.05 GDP per hour of labor in different countries in EKS-$ from 1999 (1950-2003) B1.06 Foreign trade - exports and imports in percent of the GDP of different countries (1949-2003) B1.07 GDP, wages and Unit-Labor-Cost in different countries (1960-2003) B2: Unemployment B2.01 Standardized unemployment rate in different countries with regard to the entire working population (1960-2003) B2.02 Share of long-term unemployed of the total number of unemployed in different countries in percent (1992-2004) B2.03 Youth unemployment in different countries in percent (1970-2004) B2.04 Unemployment rate in percent by sex in different countries (1963-2000) B3: Employment B3.01 Employment rate in percent in different countries (1960-2000) B3.02 Share of fixed-term employees and persons in dependent employment in percent in different countries (1983-2004) B3.03 Share of part-time employees by sex compared to the entire working population in different countries (1973-2000) B3.04 Share of un-voluntarily part-time employees by sex in different countries (1983-2003) B3.05 Share of contract workers in different countries in percent of the entire working population (1975-2002) B3.06 Share of self-employed persons in different countries in percent of the entire working population (1970-2004) B3.07 Shift worker rate in different countries in percent (1992-2005) B3.08 Yearly working hours per employee in different countries (1950-2004) B3.09 Employment by sectors in different countries (1950-2003) B3.10 Share of employees in public civil services in percent of the population between 15 and 64 years in different countries (1960-1999) B3.11 Female population, female employees and female workers in percent of the population between 16 and 64 years in different countries (1960-2000) B3.12 Employees, self-employed persons in percent of the entire working population in different countries (1960-2000) B4: Taxes and duties B4.01 Taxes and social security contributions in percent of the GDP (1965-2002) B4.02 Social expenditure in percent of the GDP (1965-2002) B4.03 Social expenditure in percent of the GDP (1960-2000) B4.04 Public expenditure in percent of the GDP in different countries (1960-2003) B4.05 Education expenditure in percent of GDP (1950-2001) B5: Debt B5.01 Insolvencies in Germany and England (1960-2004) B5.02 Insolvencies with regard to total population in different countries (1950-2002) B5.03 Consumer credits in different countries (1960-2002) C: Income distribution in Germany, Great Britain and Sweden C.01 Income inequality in different countries Einkommensungleicheit in verschiedenen Ländern (1949-2000) C.02 Income inequality after different indices and calculations in different countries (1969-2000) C.03 Redistribution: Decline in Gini-Index through transfers and taxes in percent in different countries (1969-2000) C.04 Redistribution: Decline in Gini-Index through transfers and taxes in percent with a population structure as in the United Kingdom in 1969 in different countries (1969-2000) C.05 Redistribution efficiency: Decline in Gini-/ Atkinson-Index through transfers and the share of social expenditure of the GDP in different countries (1969-2000) C.06 Index for concentration of transfers in different countries (1981-2000) C.07 Distribution of wealth in West-Germany (1953-1998) C.08 Distribution of wealth in the United Kingdom (1950-2000) C.09 Distribution of wealth in Sweden (1951-1999) C.10 Relative income poverty in different countries (1969-2000) C.11 Reduction of poverty in different countries (1969-2000) C.12 Neocorporalism index in different countries (1960-1994) D: Perception of safety D.01 Satisfaction with democracy in different countries (1976-2004) D.02 Revenues and employees in the private security sector in different countries (1950-2001) D.03 Decommodification-Score in different countries (1971-2002) E: Demographics E.01 Birth rates: Birth per 1000 women between 15 and 49 years in different countries (1951-2001) E.02 Fertility rate in different countries (1950-2004) E.03 Marriages per 100.000 persons in different countries (1950-2003) E.04 Share of foreigners of the entire population in different countries (1951-2002) E.05 Internal migration in different countries (1952-2001)

  13. Age Dependency Ratio

    • hub.arcgis.com
    Updated Jan 11, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2012). Age Dependency Ratio [Dataset]. https://hub.arcgis.com/datasets/5b39485c49c44e6b84af126478a4930f
    Explore at:
    Dataset updated
    Jan 11, 2012
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    Area covered
    Description

    This map service, derived from World Bank data, shows various characteristics of the Health topic. The World Bank Group provides financing, state-of-the-art analysis, and policy advice to help countries expand access to quality, affordable health care; protects people from falling into poverty or worsening poverty due to illness; and promotes investments in all sectors that form the foundation of healthy societies.Age Dependency Ratio: Age dependency ratio is the ratio of dependents--people younger than 15 or older than 64--to the working-age population--those ages 15-64. Data are shown as the proportion of dependents per 100 working-age population. Data from 1960 – 2012.Age Dependency Ratio Old: Age dependency ratio, old, is the ratio of older dependents--people older than 64--to the working-age population--those ages 15-64. Data are shown as the proportion of dependents per 100 working-age population. Data from 1960 – 2012.Birth/Death Rate: Crude birth/death rate indicates the number of births/deaths occurring during the year, per
    1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration. Data spans from 1960 – 2008.Total Fertility: Total fertility rate represents the number of children that would be born to a woman if she were to live to the end of her childbearing years and bear children in accordance with current age-specific fertility rates. Data shown is for 1960 - 2008.Population Growth: Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage.
    Population is based on the de facto definition of population, which
    counts all residents regardless of legal status or citizenship--except
    for refugees not permanently settled in the country of asylum, who are
    generally considered part of the population of the country of origin. Data spans from 1960 – 2009.Life Expectancy: Life expectancy at birth indicates the number of years a newborn infant
    would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life. Data spans from 1960 – 2008.Population Female: Female population is the percentage of the population that is female. Population is based on the de facto definition of population. Data from 1960 – 2009.For more information, please visit: World Bank Open Data. _Other International User Community content that may interest you World Bank World Bank Age World Bank Health

  14. Infant mortality rate per 1,000 live births in Brazil 1960-2023

    • thefarmdosupply.com
    • tokrwards.com
    • +1more
    Updated Nov 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2024). Infant mortality rate per 1,000 live births in Brazil 1960-2023 [Dataset]. https://www.thefarmdosupply.com/?_=%2Ftopics%2F12903%2Fpoverty-and-inequality-in-brazil%2F%23RslIny40YoL1bbEgyeyUHEfOSI5zbSLA
    Explore at:
    Dataset updated
    Nov 8, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Area covered
    Brazil
    Description

    In 2023, the infant mortality rate in deaths per 1,000 live births in Brazil amounted to 12.5. Between 1960 and 2023, the figure dropped by 113.9, though the decline followed an uneven course rather than a steady trajectory.

  15. w

    Measuring Income Inequality (Deininger and Squire) Database 1890-1996 -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Klaus W. Deininger and Lyn Squire (2023). Measuring Income Inequality (Deininger and Squire) Database 1890-1996 - Argentina, Australia, Austria...and 99 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/1790
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Klaus W. Deininger and Lyn Squire
    Time period covered
    1890 - 1996
    Area covered
    Argentina, Austria, Australia
    Description

    Abstract

    This file contains data on Gini coefficients, cumulative quintile shares, explanations regarding the basis on which the Gini coefficient was computed, and the source of the information. There are two data-sets, one containing the "high quality" sample and the other one including all the information (of lower quality) that had been collected.

    The database was constructed for the production of the following paper:

    Deininger, Klaus and Lyn Squire, "A New Data Set Measuring Income Inequality", The World Bank Economic Review, 10(3): 565-91, 1996.

    This article presents a new data set on inequality in the distribution of income. The authors explain the criteria they applied in selecting data on Gini coefficients and on individual quintile groups’ income shares. Comparison of the new data set with existing compilations reveals that the data assembled here represent an improvement in quality and a significant expansion in coverage, although differences in the definition of the underlying data might still affect intertemporal and international comparability. Based on this new data set, the authors do not find a systematic link between growth and changes in aggregate inequality. They do find a strong positive relationship between growth and reduction of poverty.

    Geographic coverage

    In what follows, we provide brief descriptions of main features for individual countries that are included in the data-base. Without being comprehensive, these notes are intended to indicate some of the considerations underlying our decision to include or exclude certain observations.

    Argentina Various permanent household surveys, all covering urban centers only, have been regularly conducted since 1972 and are quoted in a wide variety of sources and years, e.g., for 1980 (World Bank 1992), 1985 (Altimir 1994), and 1989 (World Bank 1992). Estimates for 1963, 1965, 1969/70, 1970/71, 1974, 1975, 1980, and 1981 (Altimir 1987) are based only on Greater Buenos Aires. Estimates for 1961, 1963, 1970 (Jain 1975) and for 1970 (van Ginneken 1984) have only limited geographic coverage and do not satisfy our minimum criteria.

    Despite the many urban surveys, there are no income distribution data that are representative of the population as a whole. References to national income distribution for the years 1953, 1959, and 1961(CEPAL 1968 in Altimir 1986 ) are based on extrapolation from national accounts and have therefore not been included. Data for 1953 and 1961 from Weisskoff (1970) , from Lecaillon (1984) , and from Cromwell (1977) are also excluded.

    Australia Household surveys, the result of which is reported in the statistical yearbook, have been conducted in 1968/9, 1975/6, 1978/9, 1981, 1985, 1986, 1989, and 1990.

    Data for 1962 (Cromwell, 1977) and 1966/67 (Sawyer 1976) were excluded as they covered only tax payers. Jain's data for 1970 was excluded because it covered income recipients only. Data from Podder (1972) for 1967/68, from Jain (1975) for the same year, from UN (1985) for 78/79, from Sunders and Hobbes (1993) for 1986 and for 1989 were excluded given the availability of the primary sources. Data from Bishop (1991) for 1981/82, from Buhman (1988) for 1981/82, from Kakwani (1986) for 1975/76, and from Sunders and Hobbes (1993) for 1986 were utilized to test for the effect of different definitions. The values for 1967 used by Persson and Tabellini and Alesina and Rodrik (based on Paukert and Jain) are close to the ones reported in the Statistical Yearbook for 1969.

    Austria: In addition to data referring to the employed population (Guger 1989), national household surveys for 1987 and 1991 are included in the LIS data base. As these data do not include income from self-employment, we do not report them in our high quality data-set.

    Bahamas Data for Ginis and shares are available for 1973, 1977, 1979, 1986, 1988, 1989, 1991, 1992, and 1993 in government reports on population censuses and household budget surveys, and for 1973 and 1975 from UN (1981). Estimates for 1970 (Jain 1975), 1973, 1975, 1977, and 1979 (Fields 1989) have been excluded given the availability of primary sources.

    Bangladesh Data from household surveys for 1973/74, 1976/77, 1977/78, 1981/82, and 1985/86 are available from the Statistical Yearbook, complemented by household-survey based information from Chen (1995) and the World Development Report. Household surveys with rural coverage for 1959, 1960, 1963/64, 1965, 1966/67 and 1968/69, and with urban coverage for 1963/64, 1965, 1966/67, and 1968/69 are also available from the Statistical yearbook. Data for 1963/64 ,1964 and 1966/67, (Jain 1975) are not included due to limited geographic coverage, We also excluded secondary sources for 1973/74, 1976/77, 1981/82 (Fields 1989), 1977 (UN 1981), 1983 (Milanovic 1994), and 1985/86 due to availability of the primary source.

    Barbados National household surveys have been conducted in 1951/52 and 1978/79 (Downs, 1988). Estimates based on personal tax returns, reported consistently for 1951-1981 (Holder and Prescott, 1989), had to be excluded as they exclude the non-wage earning population. Jain's figure (used by Alesina and Rodrik) is based on the same source.

    Belgium Household surveys with national coverage are available for 1978/79 (UN 1985), and for 1985, 1988, and 1992 (LIS 1995). Earlier data for 1969, 1973, 1975, 1976 and 1977 (UN 1981) refer to taxable households only and are not included.

    Bolivia The only survey with national coverage is the 1990 LSMS (World Development Report). Surveys for 1986 and 1989 cover the main cities only (Psacharopoulos et al. 1992) and are therefore not included. Data for 1968 (Cromwell 1977) do not refer to a clear definition and is therefore excluded.

    Botswana The only survey with national coverage was conducted in 1985-1986 (Chen et al 1993); surveys in 74/75 and 85/86 included rural areas only (UN 1981). We excluded Gini estimates for 1971/72 that refer to the economically active population only (Jain 1975), as well as 1974/75 and 1985/86 (Valentine 1993) due to lack of national coverage or consistency in definition.

    Brazil Data from 1960, 1970, 1974/75, 1976, 1977, 1978, 1980, 1982, 1983, 1985, 1987 and 1989 are available from the statistical yearbook, in addition to data for 1978 (Fields 1987) and for 1979 (Psacharopoulos et al. 1992). Other sources have been excluded as they were either not of national coverage, based on wage earners only, or because a more consistent source was available.

    Bulgaria: Data from household surveys are available for 1963-69 (in two year intervals), for 1970-90 (on an annual basis) from the Statistical yearbook and for 1991 - 93 from household surveys by the World Bank (Milanovic and Ying).

    Burkina Faso A priority survey has been undertaken in 1995.

    Central African Republic: Except for a household survey conducted in 1992, no information was available.

    Cameroon The only data are from a 1983/4 household budget survey (World Bank Poverty Assessment).

    Canada Gini- and share data for the 1950-61 (in irregular intervals), 1961-81 (biennially), and 1981-91 (annually) are available from official sources (Statistical Yearbook for years before 1971 and Income Distributions by Size in Canada for years since 1973, various issues). All other references seem to be based on these primary sources.

    Chad: An estimate for 1958 is available in the literature, and used by Alesina and Rodrik and Persson and Tabellini but was not included due to lack of primary sources.

    Chile The first nation-wide survey that included not only employment income was carried out in 1968 (UN 1981). This is complemented by household survey-based data for 1971 (Fields 1989), 1989, and 1994. Other data that refer either only to part of the population or -as in the case of a long series available from World Bank country operations- are not clearly based on primary sources, are excluded.

    China Annual household surveys from 1980 to 1992, conducted separately in rural and urban areas, were consolidated by Ying (1995), based on the statistical yearbook. Data from other secondary sources are excluded due to limited geographic and population coverage and data from Chen et al (1993) for 1985 and 1990 have not been included, to maintain consistency of sources..

    Colombia The first household survey with national coverage was conducted in 1970 (DANE 1970). In addition, there are data for 1971, 1972, 1974 CEPAL (1986), and for 1978, 1988/89, and 1991 (World Bank Poverty Assessment 1992 and Chen et al. 1995). Data referring to years before 1970 -including the 1964 estimate used in Persson and Tabellini were excluded, as were estimates for the wage earning population only.

    Costa Rica Data on Gini coefficients and quintile shares are available for 1961, 1971 (Cespedes 1973),1977 (OPNPE 1982), 1979 (Fields 1989), 1981 (Chen et al 1993), 1983 (Bourguignon and Morrison 1989), 1986 (Sauma-Fiatt 1990), and 1989 (Chen et al 1993). Gini coefficients for 1971 (Gonzalez-Vega and Cespedes in Rottenberg 1993), 1973 and 1985 (Bourguignon and Morrison 1989) cover urban areas only and were excluded.

    Cote d'Ivoire: Data based on national-level household surveys (LSMS) are available for 1985, 1986, 1987, 1988, and 1995. Information for the 1970s (Schneider 1991) is based on national accounting information and therefore excluded

    Cuba Official information on income distribution is limited. Data from secondary sources are available for 1953, 1962, 1973, and 1978, relying on personal wage income, i.e. excluding the population that is not economically active (Brundenius 1984).

    Czech Republic Household surveys for 1993 and 1994 were obtained from Milanovic and Ying. While it is in principle possible to go back further, splitting national level surveys for the former Czechoslovakia into their independent parts, we decided not to do so as the same argument could be used to

  16. Annual life expectancy in the United States 1850-2100

    • statista.com
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual life expectancy in the United States 1850-2100 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.

  17. U.S. median household income 1967-2023, by race and ethnicity

    • statista.com
    • tokrwards.com
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 1967-2023, by race and ethnicity [Dataset]. https://www.statista.com/statistics/1086359/median-household-income-race-us/
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the U.S., median household income rose from 51,570 U.S. dollars in 1967 to 80,610 dollars in 2023. In terms of broad ethnic groups, Black Americans have consistently had the lowest median income in the given years, while Asian Americans have the highest; median income in Asian American households has typically been around double that of Black Americans.

  18. Population of Nigeria 1950-2024

    • statista.com
    Updated Aug 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of Nigeria 1950-2024 [Dataset]. https://www.statista.com/statistics/1122838/population-of-nigeria/
    Explore at:
    Dataset updated
    Aug 1, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Nigeria
    Description

    As of July 2024, Nigeria's population was estimated at around 229.5 million. Between 1965 and 2024, the number of people living in Nigeria increased at an average rate of over two percent. In 2024, the population grew by 2.42 percent compared to the previous year. Nigeria is the most populous country in Africa. By extension, the African continent records the highest growth rate in the world. Africa's most populous country Nigeria was the most populous country in Africa as of 2023. As of 2022, Lagos held the distinction of being Nigeria's biggest urban center, a status it also retained as the largest city across all of sub-Saharan Africa. The city boasted an excess of 17.5 million residents. Notably, Lagos assumed the pivotal roles of the nation's primary financial hub, cultural epicenter, and educational nucleus. Furthermore, Lagos was one of the largest urban agglomerations in the world. Nigeria's youthful population In Nigeria, a significant 50 percent of the populace is under the age of 19. The most prominent age bracket is constituted by those up to four years old: comprising 8.3 percent of men and eight percent of women as of 2021. Nigeria boasts one of the world's most youthful populations. On a broader scale, both within Africa and internationally, Niger maintains the lowest median age record. Nigeria secures the 20th position in global rankings. Furthermore, the life expectancy in Nigeria is an average of 62 years old. However, this is different between men and women. The main causes of death have been neonatal disorders, malaria, and diarrheal diseases.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Share of the population living in poverty by race in the United States 1959-2023 [Dataset]. https://www.statista.com/statistics/1225017/poverty-share-by-race-race-us/
Organization logo

Share of the population living in poverty by race in the United States 1959-2023

Explore at:
Dataset updated
Oct 28, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the U.S., the share of the population living in poverty fluctuated significantly throughout the six decades between 1987 and 2023. In 2023, the poverty level across all races and ethnicities was 11.1 percent. Black Americans have been the ethnic group with the highest share of their population living in poverty almost every year since 1974. In 1979 alone, Black poverty was well over double the national average, and over four times the poverty rate in white communities; in 1982, almost 48 percent of the Black population lived in poverty. Although poverty rates have been trending downward across all ethnic groups, 17.8 percent of Black Americans and 18.9 percent of American Indian and Alaskan Natives still lived below the poverty line in 2022.

Search
Clear search
Close search
Google apps
Main menu