From February 29 to June 1, 2020, there were 268 deaths due to COVID-19 per 100,000 population in very high poverty neighborhoods in New York City, compared to a rate of around 125 deaths per 100,000 population in low poverty neighborhoods. This statistic illustrates the rate of deaths for COVID-19 in New York City from February 29 to June 1, 2020, by neighborhood poverty.
Background Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. Methods We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0.5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Sociodemographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. Findings Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86.9 years (95% UI 86.7-87.2), and for men in Singapore, at 81.3 years (78.8-83.7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap be...
The leading cause of death in low-income countries worldwide in 2021 was lower respiratory infections, followed by stroke and ischemic heart disease. The death rate from lower respiratory infections that year was 59.4 deaths per 100,000 people. While the death rate from stroke was around 51.6 per 100,000 people. Many low-income countries suffer from health issues not seen in high-income countries, including infectious diseases, malnutrition and neonatal deaths, to name a few. Low-income countries worldwide Low-income countries are defined as those with per gross national incomes (GNI) per capita of 1,045 U.S. dollars or less. A majority of the world’s low-income countries are located in sub-Saharan Africa and South East Asia. Some of the lowest-income countries as of 2023 include Burundi, Sierra Leone, and South Sudan. Low-income countries have different health problems that lead to worse health outcomes. For example, Chad, Lesotho, and Nigeria have some of the lowest life expectancies on the planet. Health issues in low-income countries Low-income countries also tend to have higher rates of HIV/AIDS and other infectious diseases as a consequence of poor health infrastructure and a lack of qualified health workers. Eswatini, Lesotho, and South Africa have some of the highest rates of new HIV infections worldwide. Likewise, tuberculosis, a treatable condition that affects the respiratory system, has high incident rates in lower income countries. Other health issues can be affected by the income of a country as well, including maternal and infant mortality. In 2023, Afghanistan had one of the highest rates of infant mortality rates in the world.
The Poverty Mapping Project: Global Subnational Infant Mortality Rates data set consists of estimates of infant mortality rates for the year 2000. The infant mortality rate for a region or country is defined as the number of children who die before their first birthday for every 1,000 live births. The data products include a shapefile (vector data) of rates, grids (raster data) of rates (per 10,000 live births in order to preserve precision in integer format), births (the rate denominator) and deaths (the rate numerator), and a tabular data set of the same and associated data. Over 10,000 national and subnational Units are represented in the tabular and grid data sets, while the shapefile uses approximately 1,000 Units in order to protect the intellectual property of source data sets for Brazil, China, and Mexico. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
This map displays data from the Selected Economic Indicators (DP03) dataset from the 2010 American Community Survey 5-Yr Estimates, U.S. Census Bureau. Data is shown at the level of Census Tract, County, and Small Area (aggregation of Census Tracts developed by the New Mexico Department of Health). Measuring poverty is a topic of much current discussion. See the following links: A Different Way to Measure Poverty - http://www.sanders.senate.gov/imo/media/image/census.jpg"Few topics in American society have more myths and stereotypes surrounding them than poverty, misconceptions that distort both our politics and our domestic policy making."They include the notion that poverty affects a relatively small number of Americans, that the poor are impoverished for years at a time, that most of those in poverty live in inner cities, that too much welfare assistance is provided and that poverty is ultimately a result of not working hard enough. Although pervasive, each assumption is flat-out wrong." -Mark Rank, Professor of Social Welfare at Washington University: http://opinionator.blogs.nytimes.com/2013/11/02/poverty-in-america-is-mainstream/
The annual infant mortality rate in Africa ranges from 99 to 2031 deaths of children less than one-year-old per 10,000 live births.Dataset Summary This layer provides access to an approximately 5 km cell sized raster of the Global Subnational Infant Mortality Rates dataset that provides the number of deaths of children less than one-year-old per 10,000 live births in the year 2000. The data cover Africa, Madagascar, and other islands near Africa and were produced by the NASA Socioeconomic Data and Applications Center in 2005.Link to source metadataWhat can you do with this layer?This layer has query, identify, and export image services available. The layer is restricted to a 24,000 x 24,000 pixel limit for these services. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.
Users can access data related to international women’s health as well as data on population and families, education, work, power and decision making, violence against women, poverty, and environment. Background World’s Women Reports are prepared by the Statistics Division of the United Nations Department for Economic and Social Affairs (UNDESA). Reports are produced in five year intervals and began in 1990. A major theme of the reports is comparing women’s situation globally to that of men in a variety of fields. Health data is available related to life expectancy, cause of death, chronic disease, HIV/AIDS, prenatal care, maternal morbidity, reproductive health, contraceptive use, induced abortion, mortality of children under 5, and immunization. User functionality Users can download full text or specific chapter versions of the reports in color and black and white. A limited number of graphs are available for download directly from the website. Topics include obesity and underweight children. Data Notes The report and data tables are available for download in PDF format. The next report is scheduled to be released in 2015. The most recent report was released in 2010.
Coronavirus-19 Deaths (Hourly Update) vs. Median Household Income (ACS)See Detailed graphs and tables describing the COVID-19 crisis in New Mexico, updated daily (includes some county level data not found elsewhere) - https://sites.google.com/view/new-mexico-covid19-tracking/homeCDC's Description of the Social Vulnerability Index (takes into account 15 different selected indicators):https://svi.cdc.gov/
The COVID-19 pandemic has brought about massive declines in well-being around the world. This paper seeks to quantify and compare two important components of those losses—increased mortality and higher poverty—using years of human life as a common metric. The paper estimates that almost 20 million life-years were lost to COVID-19 by December 2020. Over the same period and by the most conservative definition, more than 120 million additional years were spent in poverty because of the pandemic. The mortality burden, whether estimated in lives or years of life lost, increases sharply with gross domestic product per capita. By contrast, the poverty burden declines with per capita national income when a constant absolute poverty line is used, or is uncorrelated with national income when a more relative approach is taken to poverty lines. In both cases, the poverty burden of the pandemic, relative to the mortality burden, is much higher for poor countries. The distribution of aggregate welfare losses—combining mortality and poverty and expressed in terms of life-years —depends on the choice of poverty line(s) and the relative weights placed on mortality and poverty. With a constant absolute poverty line and a relatively low welfare weight on mortality, poorer countries are found to bear a greater welfare loss from the pandemic. When poverty lines are set differently for poor, middle-income, and high-income countries and/or a greater welfare weight is placed on mortality, upper-middle-income and rich countries suffer the most.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortality Rates (per 100,000)a for All Unintentional Injuries and Specific Causes, US 1999–2012.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Peru was one of the countries most affected by the COVID-19 pandemic in terms of health and economic impacts and the erosion of the socialgains achieved in the previous decade. By July 2022, Peru had registered more than 6,000 deaths per million population because of COVID-19,placing the country among the countries with the highest COVID-related mortality rates per capita. The economy contracted by 11 percent in 2020, its biggest fall in 30 years and the largest in Latin America during that year. As a result, the national poverty rate increased to 30.1 percent, a level not seen since 2010, and extreme poverty reached 5.1percent in 2020, comparable with the rate in 2013. By the end of 2021, the economy had recovered, but poverty and extreme poverty remained at the levels of 2012 and 2015, respectively. The magnitude of the welfare loss during the crisis revealed the fragility of the social gains that had been achieved during the previous two decades.
Explore gender statistics data focusing on academic staff, employment, fertility rates, GDP, poverty, and more in the GCC region. Access comprehensive information on key indicators for Bahrain, China, India, Kuwait, Oman, Qatar, and Saudi Arabia.
academic staff, Access to anti-retroviral drugs, Adjusted net enrollment rate, Administration and Law programmes, Age at first marriage, Age dependency ratio, Cause of death, Children out of school, Completeness of birth registration, consumer prices, Cost of business start-up procedures, Employers, Employment in agriculture, Employment in industry, Employment in services, employment or training, Engineering and Mathematics programmes, Female headed households, Female migrants, Fertility planning status: mistimed pregnancy, Fertility planning status: planned pregnancy, Fertility rate, Firms with female participation in ownership, Fisheries and Veterinary programmes, Forestry, GDP, GDP growth, GDP per capita, gender parity index, Gini index, GNI, GNI per capita, Government expenditure on education, Government expenditure per student, Gross graduation ratio, Households with water on the premises, Inflation, Informal employment, Labor force, Labor force with advanced education, Labor force with basic education, Labor force with intermediate education, Learning poverty, Length of paid maternity leave, Life expectancy at birth, Mandatory retirement age, Manufacturing and Construction programmes, Mathematics and Statistics programmes, Number of under-five deaths, Part time employment, Population, Poverty headcount ratio at national poverty lines, PPP, Primary completion rate, Retirement age with full benefits, Retirement age with partial benefits, Rural population, Sex ratio at birth, Unemployment, Unemployment with advanced education, Urban population
Bahrain, China, India, Kuwait, Oman, Qatar, Saudi Arabia
Follow data.kapsarc.org for timely data to advance energy economics research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Injury Fatalities, Population Attributable Fraction, and Attributable Deaths for County Poverty, 1999–2010.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: A one third reduction of premature deaths from non-communicable diseases by 2030 is a target of the United Nations Sustainable Development Goal for Health. Unlike in other developed nations, premature mortality in the United States (US) is increasing. The state of Oklahoma suffers some of the greatest rates in the US of both all-cause mortality and overdose deaths. Medicaid opioids are associated with overdose death at the patient level, but the impact of this exposure on population all-cause mortality is unknown. The objective of this study was to look for an association between Medicaid spending, as proxy measure for Medicaid opioid exposure, and all-cause mortality rates in the 45–54-year-old American Indian/Alaska Native (AI/AN45-54) and non-Hispanic white (NHW45-54) populations.Methods: All-cause mortality rates were collected from the US Centers for Disease Control & Prevention Wonder Detailed Mortality database. Annual per capita (APC) Medicaid spending, and APC Medicare opioid claims, smoking, obesity, and poverty data were also collected from existing databases. County-level multiple linear regression (MLR) analyses were performed. American Indian mortality misclassification at death is known to be common, and sparse populations are present in certain counties; therefore, the two populations were examined as a combined population (AI/NHW45-54), with results being compared to NHW45-54 alone.Results: State-level simple linear regressions of AI/NHW45-54 mortality and APC Medicaid spending show strong, linear correlations: females, coefficient 0.168, (R2 0.956; P < 0.0001; CI95 0.15, 0.19); and males, coefficient 0.139 (R2 0.746; P < 0.0001; CI95 0.10, 0.18). County-level regression models reveal that AI/NHW45-54 mortality is strongly associated with APC Medicaid spending, adjusting for Medicare opioid claims, smoking, obesity, and poverty. In females: [R2 0.545; (F)P < 0.0001; Medicaid spending coefficient 0.137; P < 0.004; 95% CI 0.05, 0.23]. In males: [R2 0.719; (F)P < 0.0001; Medicaid spending coefficient 0.330; P < 0.001; 95% CI 0.21, 0.45].Conclusions: In Oklahoma, per capita Medicaid spending is a very strong risk factor for all-cause mortality in the combined AI/NHW45-54 population, after controlling for Medicare opioid claims, smoking, obesity, and poverty.
Goal 1End poverty in all its forms everywhereTarget 1.1: By 2030, eradicate extreme poverty for all people everywhere, currently measured as people living on less than $1.25 a dayIndicator 1.1.1: Proportion of the population living below the international poverty line by sex, age, employment status and geographic location (urban/rural)SI_POV_DAY1: Proportion of population below international poverty line (%)SI_POV_EMP1: Employed population below international poverty line, by sex and age (%)Target 1.2: By 2030, reduce at least by half the proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitionsIndicator 1.2.1: Proportion of population living below the national poverty line, by sex and ageSI_POV_NAHC: Proportion of population living below the national poverty line (%)Indicator 1.2.2: Proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitionsSD_MDP_MUHC: Proportion of population living in multidimensional poverty (%)SD_MDP_ANDI: Average proportion of deprivations for people multidimensionally poor (%)SD_MDP_MUHHC: Proportion of households living in multidimensional poverty (%)SD_MDP_CSMP: Proportion of children living in child-specific multidimensional poverty (%)Target 1.3: Implement nationally appropriate social protection systems and measures for all, including floors, and by 2030 achieve substantial coverage of the poor and the vulnerableIndicator 1.3.1: Proportion of population covered by social protection floors/systems, by sex, distinguishing children, unemployed persons, older persons, persons with disabilities, pregnant women, newborns, work-injury victims and the poor and the vulnerableSI_COV_MATNL: [ILO] Proportion of mothers with newborns receiving maternity cash benefit (%)SI_COV_POOR: [ILO] Proportion of poor population receiving social assistance cash benefit, by sex (%)SI_COV_SOCAST: [World Bank] Proportion of population covered by social assistance programs (%)SI_COV_SOCINS: [World Bank] Proportion of population covered by social insurance programs (%)SI_COV_CHLD: [ILO] Proportion of children/households receiving child/family cash benefit, by sex (%)SI_COV_UEMP: [ILO] Proportion of unemployed persons receiving unemployment cash benefit, by sex (%)SI_COV_VULN: [ILO] Proportion of vulnerable population receiving social assistance cash benefit, by sex (%)SI_COV_WKINJRY: [ILO] Proportion of employed population covered in the event of work injury, by sex (%)SI_COV_BENFTS: [ILO] Proportion of population covered by at least one social protection benefit, by sex (%)SI_COV_DISAB: [ILO] Proportion of population with severe disabilities receiving disability cash benefit, by sex (%)SI_COV_LMKT: [World Bank] Proportion of population covered by labour market programs (%)SI_COV_PENSN: [ILO] Proportion of population above statutory pensionable age receiving a pension, by sex (%)Target 1.4: By 2030, ensure that all men and women, in particular the poor and the vulnerable, have equal rights to economic resources, as well as access to basic services, ownership and control over land and other forms of property, inheritance, natural resources, appropriate new technology and financial services, including microfinanceIndicator 1.4.1: Proportion of population living in households with access to basic servicesSP_ACS_BSRVH2O: Proportion of population using basic drinking water services, by location (%)SP_ACS_BSRVSAN: Proportion of population using basic sanitation services, by location (%)Indicator 1.4.2: Proportion of total adult population with secure tenure rights to land, (a) with legally recognized documentation, and (b) who perceive their rights to land as secure, by sex and type of tenureSP_LGL_LNDDOC: Proportion of people with legally recognized documentation of their rights to land out of total adult population, by sex (%)SP_LGL_LNDSEC: Proportion of people who perceive their rights to land as secure out of total adult population, by sex (%)SP_LGL_LNDSTR: Proportion of people with secure tenure rights to land out of total adult population, by sex (%)Target 1.5: By 2030, build the resilience of the poor and those in vulnerable situations and reduce their exposure and vulnerability to climate-related extreme events and other economic, social and environmental shocks and disastersIndicator 1.5.1: Number of deaths, missing persons and directly affected persons attributed to disasters per 100,000 populationVC_DSR_MISS: Number of missing persons due to disaster (number)VC_DSR_AFFCT: Number of people affected by disaster (number)VC_DSR_MORT: Number of deaths due to disaster (number)VC_DSR_MTMP: Number of deaths and missing persons attributed to disasters per 100,000 population (number)VC_DSR_MMHN: Number of deaths and missing persons attributed to disasters (number)VC_DSR_DAFF: Number of directly affected persons attributed to disasters per 100,000 population (number)VC_DSR_IJILN: Number of injured or ill people attributed to disasters (number)VC_DSR_PDAN: Number of people whose damaged dwellings were attributed to disasters (number)VC_DSR_PDYN: Number of people whose destroyed dwellings were attributed to disasters (number)VC_DSR_PDLN: Number of people whose livelihoods were disrupted or destroyed, attributed to disasters (number)Indicator 1.5.2: Direct economic loss attributed to disasters in relation to global gross domestic product (GDP)VC_DSR_GDPLS: Direct economic loss attributed to disasters (current United States dollars)VC_DSR_LSGP: Direct economic loss attributed to disasters relative to GDP (%)VC_DSR_AGLH: Direct agriculture loss attributed to disasters (current United States dollars)VC_DSR_HOLH: Direct economic loss in the housing sector attributed to disasters (current United States dollars)VC_DSR_CILN: Direct economic loss resulting from damaged or destroyed critical infrastructure attributed to disasters (current United States dollars)VC_DSR_CHLN: Direct economic loss to cultural heritage damaged or destroyed attributed to disasters (millions of current United States dollars)VC_DSR_DDPA: Direct economic loss to other damaged or destroyed productive assets attributed to disasters (current United States dollars)Indicator 1.5.3: Number of countries that adopt and implement national disaster risk reduction strategies in line with the Sendai Framework for Disaster Risk Reduction 2015–2030SG_DSR_LGRGSR: Score of adoption and implementation of national DRR strategies in line with the Sendai FrameworkSG_DSR_SFDRR: Number of countries that reported having a National DRR Strategy which is aligned to the Sendai FrameworkIndicator 1.5.4: Proportion of local governments that adopt and implement local disaster risk reduction strategies in line with national disaster risk reduction strategiesSG_DSR_SILS: Proportion of local governments that adopt and implement local disaster risk reduction strategies in line with national disaster risk reduction strategies (%)SG_DSR_SILN: Number of local governments that adopt and implement local DRR strategies in line with national strategies (number)SG_GOV_LOGV: Number of local governments (number)Target 1.a: Ensure significant mobilization of resources from a variety of sources, including through enhanced development cooperation, in order to provide adequate and predictable means for developing countries, in particular least developed countries, to implement programmes and policies to end poverty in all its dimensionsIndicator 1.a.1: Total official development assistance grants from all donors that focus on poverty reduction as a share of the recipient country’s gross national incomeDC_ODA_POVLG: Official development assistance grants for poverty reduction, by recipient countries (percentage of GNI)DC_ODA_POVDLG: Official development assistance grants for poverty reduction, by donor countries (percentage of GNI)DC_ODA_POVG: Official development assistance grants for poverty reduction (percentage of GNI)Indicator 1.a.2: Proportion of total government spending on essential services (education, health and social protection)SD_XPD_ESED: Proportion of total government spending on essential services, education (%)Target 1.b: Create sound policy frameworks at the national, regional and international levels, based on pro-poor and gender-sensitive development strategies, to support accelerated investment in poverty eradication actionsIndicator 1.b.1: Pro-poor public social spending
The Checking Out project is a small qualitative study exploring attitudes towards, and experiences of, death and dying in low-income communities in the UK. The aims of the project are to explore the notion of ‘a good death’ within low-income communities, to understand the impact of poverty on experiences of end of life and bereavement and to advance understanding of the ways in which fear, stigma and trust impact on communication, relations (between patients, carers, families, social networks, healthcare professionals and organisations) and access to end-of-life care. This dataset includes interviews with bereaved individuals (n=14) and professionals involved in supporting people experiencing poverty at end of life or in bereavement (n = 15) and represents one strand of the Checking Out study.
The Checking Out project forms part of a three year fellowship, funded by the Wellcome Trust, exploring attitudes towards and experiences of death and dying in low-income communities in the UK. The research employs mixed qualitative methods in community settings to focus on the views and experiences of those living on a low-income in relation to end-of-life care and bereavement. The aims of the Checking Out project are 1)to explore the notion of ‘a good death’ within low-income communities, using an engaged research approach to examine and contextualise the ways that individuals talk about and view death and dying 2)to understand the impact of poverty on experiences of end of life and bereavement 3)to advance understanding of the ways in which fear, stigma and trust impact on communication, relations (between patients, carers, families, social networks, healthcare professionals and organisations) and access to end-of-life care.
Social factors have been shown to create differential burden of influenza across different geographic areas. We explored the relationship between potential aggregate-level social determinants and mortality during the 1918 influenza pandemic in Chicago using a historical dataset of 7,971 influenza and pneumonia deaths. Census tract-level social factors, including rates of illiteracy, homeownership, population, and unemployment, were assessed as predictors of pandemic mortality in Chicago. Poisson models fit with generalized estimating equations (GEEs) were used to estimate the association between social factors and the risk of influenza and pneumonia mortality. The Poisson model showed that influenza and pneumonia mortality increased, on average, by 32.2% for every 10% increase in illiteracy rate adjusted for population density, homeownership, unemployment, and age. We also found a significant association between transmissibility and population density, illiteracy, and unemployment but not homeownership. Lastly, analysis of the point locations of reported influenza and pneumonia deaths revealed fine-scale spatiotemporal clustering. This study shows that living in census tracts with higher illiteracy rates increased the risk of influenza and pneumonia mortality during the 1918 influenza pandemic in Chicago. Our observation that disparities in structural determinants of neighborhood-level health lead to disparities in influenza incidence in this pandemic suggests that disparities and their determinants should remain targets of research and control in future pandemics. 1918 Pandemic Influenza Mortality, Chicago USAPoint location and week of epidemic of 8,031 influenza and pneumonia deaths recorded during the 1918 Spanish flu pandemic within the city of Chicago. Data was digitized from 1920 City of Chicago Department of Health annual report Date last modified: 25-10-2016. Fields include: ID (FID), indicator of pneumonia (0 or 1, 0 indicates an influenza death, 1 an influenza and pneumonia death), x and y coordinates (with units in meters), and week (sequential week of epidemic). See paper for more details.points.csvFine-scale sociodemographics of Chicago, USA, 1920Socio-demographic data (including population size, illiteracy, unemployment) of 496 census tracts within the City of Chicago. Data was collected from the 1920 national census.tracts.csvShapefile of census tract boundaries in Chicago in 1920Shapefile of census tract boundaries in Chicago in 1920. File included in zip file include IL_tract_a.dbf, IL_tract_a.prj, IL_tract_a.sbn, IL_tract_a.sbx, IL_tract_a.shp, IL_tract_a.shp.xml, IL_tract_a.shxshapefile.zip
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Socioeconomic disparities play an important role in the development of severe clinical outcomes including deaths from COVID-19. However, the current scientific evidence in regard the association between measures of poverty and COVID-19 mortality in hospitalized patients is scant. The objective of this study was to investigate whether there is an association between the Colombian Multidimensional Poverty Index (CMPI) and mortality from COVID-19 in hospitalized patients in Colombia from May 1, 2020 to August 15, 2021. This was an ecological study using individual data on hospitalized patients from the National Institute of Health of Colombia (INS), and municipal level data from the High-Cost Account and the National Administrative Department of Statistics. The main outcome variable was mortality due to COVID-19. The main exposure variable was the CMPI that ranges from 0 to 100% and was categorized into five levels: (i) level I (0%−20%), (ii) level II (20%−40%), (iii) level III (40%−60%), (iv) level IV (60%−80%); and (v) level V (80%−100%). The higher the level, the higher the level of multidimensional poverty. A Bayesian multilevel logistic regression model was applied to estimate Odds Ratio (OR) and their corresponding 95% credible intervals (CI). In addition, a subgroup analysis was performed according to the epidemiological COVID-19 waves using the same model. The odds for dying from COVID-19 was 1.46 (95% CI 1.4–1.53) for level II, 1.41 (95% CI 1.33–1.49) for level III and 1.70 (95% CI 1.54–1.89) for level IV hospitalized COVID-19 patients compared with the least poor patients (CMPI level I). In addition, age and male sex also increased mortality in COVID-19 hospitalized patients. Patients between 26 and 50 years-of-age had 4.17-fold increased odds (95% CI 4.07–4.3) of death compared with younger than 26-years-old patients. The corresponding for 51–75 years-old patients and those above the age of 75 years were 9.17 (95% CI 8.93–9.41) and 17.1 (95% CI 16.63–17.56), respectively. Finally, the odds of death from COVID-19 in hospitalized patients gradually decreased as the pandemic evolved. In conclusion, socioeconomic disparities were a major risk factor for mortality in patients hospitalized for COVID-19 in Colombia.
Explore World Bank Health, Nutrition and Population Statistics dataset featuring a wide range of indicators such as School enrollment, UHC service coverage index, Fertility rate, and more from countries like Bahrain, China, India, Kuwait, Oman, Qatar, and Saudi Arabia.
School enrollment, tertiary, UHC service coverage index, Wanted fertility rate, People with basic handwashing facilities, urban population, Rural population, AIDS estimated deaths, Domestic private health expenditure, Fertility rate, Domestic general government health expenditure, Age dependency ratio, Postnatal care coverage, People using safely managed drinking water services, Unemployment, Lifetime risk of maternal death, External health expenditure, Population growth, Completeness of birth registration, Urban poverty headcount ratio, Prevalence of undernourishment, People using at least basic sanitation services, Prevalence of current tobacco use, Urban poverty headcount ratio, Tuberculosis treatment success rate, Low-birthweight babies, Female headed households, Completeness of birth registration, Urban population growth, Antiretroviral therapy coverage, Labor force, and more.
Bahrain, China, India, Kuwait, Oman, Qatar, Saudi Arabia
Follow data.kapsarc.org for timely data to advance energy economics research.
An information system based on data from the healthcare sector and related areas. The online portal gives researchers the opportunity to research various health topics including population, socio-economic factors, health insurance, health laws.
From February 29 to June 1, 2020, there were 268 deaths due to COVID-19 per 100,000 population in very high poverty neighborhoods in New York City, compared to a rate of around 125 deaths per 100,000 population in low poverty neighborhoods. This statistic illustrates the rate of deaths for COVID-19 in New York City from February 29 to June 1, 2020, by neighborhood poverty.