7 datasets found
  1. GDP per capita adjusted for PPP in CEE 1990-2029, by country

    • statista.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). GDP per capita adjusted for PPP in CEE 1990-2029, by country [Dataset]. https://www.statista.com/statistics/1267791/gdp-per-capita-adjusted-for-ppp-cee-by-country/
    Explore at:
    Dataset updated
    Oct 23, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    CEE
    Description

    Czechia had the highest gross domestic product (GDP) per capita based on purchasing-power-parity (PPP) among Central and Eastern European (CEE) countries in 2024, at an estimated 50 thousand 2017 international U.S. dollars. It was followed by Slovenia and Lithuania. The lowest figure among the presented CEE countries was recorded in Ukraine. In 2029, Poland's GDP per capita in PPP terms was forecast to reach approximately 53.6 thousand 2017 international U.S. dollars.

  2. U.S. real per capita GDP 2023, by state

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. real per capita GDP 2023, by state [Dataset]. https://www.statista.com/statistics/248063/per-capita-us-real-gross-domestic-product-gdp-by-state/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    Out of all 50 states, New York had the highest per-capita real gross domestic product (GDP) in 2023, at 90,730 U.S. dollars, followed closely by Massachusetts. Mississippi had the lowest per-capita real GDP, at 39,102 U.S. dollars. While not a state, the District of Columbia had a per capita GDP of more than 214,000 U.S. dollars. What is real GDP? A country’s real GDP is a measure that shows the value of the goods and services produced by an economy and is adjusted for inflation. The real GDP of a country helps economists to see the health of a country’s economy and its standard of living. Downturns in GDP growth can indicate financial difficulties, such as the financial crisis of 2008 and 2009, when the U.S. GDP decreased by 2.5 percent. The COVID-19 pandemic had a significant impact on U.S. GDP, shrinking the economy 2.8 percent. The U.S. economy rebounded in 2021, however, growing by nearly six percent. Why real GDP per capita matters Real GDP per capita takes the GDP of a country, state, or metropolitan area and divides it by the number of people in that area. Some argue that per-capita GDP is more important than the GDP of a country, as it is a good indicator of whether or not the country’s population is getting wealthier, thus increasing the standard of living in that area. The best measure of standard of living when comparing across countries is thought to be GDP per capita at purchasing power parity (PPP) which uses the prices of specific goods to compare the absolute purchasing power of a countries currency.

  3. GDP per capita (2010) - ClimAfrica WP4

    • data.amerigeoss.org
    http, pdf, png, zip
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). GDP per capita (2010) - ClimAfrica WP4 [Dataset]. https://data.amerigeoss.org/dataset/e6c167cf-fd37-4384-8a02-1006e403f529
    Explore at:
    pdf, http, png, zipAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The Gross Domestic Product per capita (gross domestic product divided by mid-year population converted to international dollars, using purchasing power parity rates) has been identified as an important determinant of susceptibility and vulnerability by different authors and used in the Disaster Risk Index 2004 (Peduzzi et al. 2009, Schneiderbauer 2007, UNDP 2004) and is commonly used as an indicator for a country's economic development (e.g. Human Development Index). Despite some criticisms (Brooks et al. 2005) it is still considered useful to estimate a population's susceptibility to harm, as limited monetary resources are seen as an important factor of vulnerability. However, collection of data on economic variables, especially sub-national income levels, is problematic, due to various shortcomings in the data collection process. Additionally, the informal economy is often excluded from official statistics. Night time lights satellite imagery of NOAA grid provides an alternative means for measuring economic activity. NOAA scientists developed a model for creating a world map of estimated total (formal plus informal) economic activity. Regression models were developed to calibrate the sum of lights to official measures of economic activity at the sub-national level for some target Country and at the national level for other countries of the world, and subsequently regression coefficients were derived. Multiplying the regression coefficients with the sum of lights provided estimates of total economic activity, which were spatially distributed to generate a 30 arc-second map of total economic activity (see Ghosh, T., Powell, R., Elvidge, C. D., Baugh, K. E., Sutton, P. C., & Anderson, S. (2010).Shedding light on the global distribution of economic activity. The Open Geography Journal (3), 148-161). We adjusted the GDP to the total national GDPppp amount as recorded by IMF (International Monetary Fund) for 2010 and we divided it by the population layer from Worldpop Project. Further, we ran a focal statistics analysis to determine mean values within 10 cell (5 arc-minute, about 10 Km) of each grid cell. This had a smoothing effect and represents some of the extended influence of intense economic activity for local people. Finally we apply a mask to remove the area with population below 1 people per square Km.

    This dataset has been produced in the framework of the "Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)" project, Work Package 4 (WP4). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.

    Data publication: 2014-06-01

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Selvaraju Ramasamy

    Resource constraints:

    copyright

    Online resources:

    GDP per capita

    Project deliverable D4.1 - Scenarios of major production systems in Africa

    Climafrica Website - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations

  4. a

    World Countries 50M Human Development Index TimeSeries

    • amerigeo.org
    • amerigeo-amerigeoss.hub.arcgis.com
    • +2more
    Updated Feb 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maps.com (2016). World Countries 50M Human Development Index TimeSeries [Dataset]. https://www.amerigeo.org/maps/beyondmaps::world-countries-50m-human-development-index-timeseries
    Explore at:
    Dataset updated
    Feb 11, 2016
    Dataset provided by
    Maps.com
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    World,
    Description

    Countries from Natural Earth 50M scale data with a Human Development Index attribute, repeated for each of the following years: 1980, 1985, 1990, 1995, 2000, 2005, 2010, & 2013, to enable time-series display using the YEAR attribute. The Human Development Index measures achievement in 3 areas of human development: long life, good education and income. Specifically, the index is computed using life expectancy at birth, Mean years of schooling, expected years of schooling, and gross national income (GNI) per capita (PPP $). The United Nations categorizes the HDI values into 4 groups. In 2013 these groups were defined by the following HDI values: Very High: 0.736 and higher High: 0.615 to 0.735 Medium: 0.494 to 0.614 Low: 0.493 and lower

    Human Development Index attributes are from The World Bank: HDRO calculations based on data from UNDESA (2013a), Barro and Lee (2013), UNESCO Institute for Statistics (2013), UN Statistics Division (2014), World Bank (2014) and IMF (2014).

  5. a

    Gross National Income by country, 2014

    • amerigeo.org
    • data.amerigeoss.org
    • +3more
    Updated Feb 10, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maps.com (2016). Gross National Income by country, 2014 [Dataset]. https://www.amerigeo.org/datasets/240310714f97424c80d3f7bf61e487e4
    Explore at:
    Dataset updated
    Feb 10, 2016
    Dataset provided by
    Maps.com
    Area covered
    Description

    Gross National Income (GNI) per Capita based on purchasing power parity (current international $) by country for 2014. This is a filtered layer based on the "Gross National Income by country, 1990-2010 time series" layer. GNI based on purchasing power parity rates allows for easier comparison of countries by taking into account price differences between countries. GNI is the sum of value added by all resident producers plus any product taxes (less subsidies) not included in the valuation of output plus net receipts of primary income (compensation of employees and property income) from abroad. Data are in current international dollars based on the 2011 ICP round.Data Sources: World Bank, International Comparison Program database; Country shapes from Natural Earth 50M scale data.

  6. a

    Human Development Index by country, 2013

    • hub.arcgis.com
    • communities-amerigeoss.opendata.arcgis.com
    Updated Feb 11, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maps.com (2016). Human Development Index by country, 2013 [Dataset]. https://hub.arcgis.com/maps/0bd845b384254cb09872d5bbae699206
    Explore at:
    Dataset updated
    Feb 11, 2016
    Dataset provided by
    Maps.com
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    Human Development Index by country for 2013. This is a filtered layer based on the "Human Development Index by country, 1980-2010 time-series" layer.The Human Development Index measures achievement in 3 areas of human development: long life, good education and income. Specifically, the index is computed using life expectancy at birth, Mean years of schooling, expected years of schooling, and gross national income (GNI) per capita (PPP $).The United Nations categorizes the HDI values into 4 groups. In 2013 these groups were defined by the following HDI values:

    Very High Human Development: 0.736 and higher High Human Development: 0.615 to 0.735 Medium Human Development: 0.494 to 0.614 Low Human Development: 0.493 and lower

    Country shapes from Natural Earth 50M scale data. Human Development Index attributes are from The World Bank: HDRO calculations based on data from UNDESA (2013a), Barro and Lee (2013), UNESCO Institute for Statistics (2013), UN Statistics Division (2014), World Bank (2014) and IMF (2014).

  7. House-price-to-income ratio in selected countries worldwide 2023

    • statista.com
    • flwrdeptvarieties.store
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2023 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2023. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 117.5 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). GDP per capita adjusted for PPP in CEE 1990-2029, by country [Dataset]. https://www.statista.com/statistics/1267791/gdp-per-capita-adjusted-for-ppp-cee-by-country/
Organization logo

GDP per capita adjusted for PPP in CEE 1990-2029, by country

Explore at:
Dataset updated
Oct 23, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
CEE
Description

Czechia had the highest gross domestic product (GDP) per capita based on purchasing-power-parity (PPP) among Central and Eastern European (CEE) countries in 2024, at an estimated 50 thousand 2017 international U.S. dollars. It was followed by Slovenia and Lithuania. The lowest figure among the presented CEE countries was recorded in Ukraine. In 2029, Poland's GDP per capita in PPP terms was forecast to reach approximately 53.6 thousand 2017 international U.S. dollars.

Search
Clear search
Close search
Google apps
Main menu