Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1/3 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and in limited areas of Alaska. The seamless 1/3arc-second DEM is available as pre-staged current and historical products tiled in GeoTIFF format. The seamless 1/3 arc-second DEM layer is updated continually as new data become available in the current folder. Previously created 1 degree blocks are retained in the historical folder with an appended date suffix (YYYMMDD) when they were produced. Other 3DEP products are nationally seamless DEMs in resolutions of 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain. This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here. Click here for a broad overview of this dataset
This is a tiled collection of the 3D Elevation Program (3DEP) covering Alaska only, and is 5-meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard 5-meter DEMs are produced exclusively from interferometric synthetic aperture radar (Ifsar) source data of 5-meter or higher resolution. Five-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. This DEM is delivered in the original resolution, with the original spatial reference. All elevation units have been converted to meters. These data may be used as the source of updates to the seamless 1/3 arc-second DEM layer, which serves as the elevation layer of The National Map. Other 3DEP products are nationally seamless DEMs in resolutions of 1 and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products in Alaska include lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
The USGS 3D Elevation Program (3DEP) Index service from The National Map shows two general categories of downloadable elevation data: (1) digital elevation model (DEM) datasets at standardized horizontal resolutions, and (2) elevation source data including that used to produce standard DEMs, and additional datasets derived from ifsar in Alaska only. Distributable DEM products include: 2 arc-second (in Alaska only); 1 arc-second; 1/3 arc-second; 1/9 arc-second; 5 meter (in Alaska only); and 1 meter. The 2-, 1-, and 1/3-arc-second products are staged for download in 1x1 degree tiles in ArcGrid, GridFloat, or IMG formats, while 1/9 arc-second products are staged in 15x15 minute tiles in IMG format only. The 5-meter products are staged for download in ArcGrid only as a single mosaicked raster to each project extent. The 1-meter products are staged in 10,000x10,000 meter tiles in IMG format only. Distributable elevation source data include: lidar point clouds (LPC) in LAS format for various parts of the U.S., and ifsar-derived digital surface models (DSM) and orthorectified radar images (ORI) in TIFF format in Alaska only. For additional information on the 3DEP, go to http://nationalmap.gov/3DEP/index.html.
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is an Earth observation radar mission that consists of a SAR interferometer built by two almost identical satellites flying in close formation. With a typical separation between the satellites of 120m to 500m a global Digital Elevation Model (DEM) has been generated. The main objective of the TanDEM-X mission is to create a precise 3D map of the Earth's land surfaces that is homogeneous in quality and unprecedented in accuracy. The data acquisition was completed in 2015 and production of the global DEM was completed in September 2016. The absolute height error is with about 1m an order of magnitude below the 10m requirement.
The TanDEM-X 30m DEM is a product variant of the global Digital Elevation Model (DEM) acquired in the frame of the German TanDEM-X mission between 2010 and 2015, and has a reduced pixel spacing of 1 arcsecond (30m at the equator). It covers all Earth’s landmasses from pole to pole.
For more information concerning the TanDEM-X mission, the reader is referred to: https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10378/
This collection of the 3D Elevation Program (3DEP) is at 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The vertical reference will vary in other areas. The seamless 1/3 arc-second DEM layer provides coverage of the conterminous United States, Hawaii, Puerto Rico, other territorial islands, and in limited areas of Alaska. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. All 3DEP products are public domain.
Click here for more details on this datasetA highly accurate elevation dataset of ground surface topography, derived from aerial Light Detection and Ranging (LiDAR). This 2m resolution version of the bare-Earth LiDAR DEM can be used for a wide range of applications such as 3D spatial analysis (slope calculations, profile creation, volumetric computations), engineering applications (land developments, road design, flood modelling) and 3D terrain visualizations, just to name a few. To learn more, view the attached metadata PDF documents.
DEM of 1m and 20cm resolution are also available on Cityonline.calgary.ca
Two versions are available for download in separate zip files.
The first contains a citywide DEM file in ESRI ArcGrid ASCII (.asc) format. The compressed file for download is 0.5 GB. The uncompressed file is 4.2 GB.
A second zip file contains the same DEM but it is split into smaller files, tiled by Alberta Township System (ATS) sections. The compressed file for download is 0.6 GB. The uncompressed files are 3.0 GB in total for all sections.
The Current Height File Netherlands DTM (AHN) is the digital height map for the entire Netherlands of ground level without objects such as buildings or trees. The AHN raster files have a resolution of 0.5 meters. It contains detailed and precise height data determined with a minimum of 10 height measurements per square meter. The height is measured with laser altimetry: a technique in which a plane with a laser beam scans the Earth’s surface. Of the measured heights (points), 3D point clouds and grids are made. Ahn is a collaboration of the provinces, government and water boards. The height file AHN4 DTM ground level grid is the grid manufactured by classifying points as “ground level” and converting them to a grid based on a Squared IDW method. No further operations have been carried out. Points that are omitted are objects such as trees, buildings, bridges, water and other objects. The current AHN is version 4, this version has been obtained over the years 2020, 2021 and 2022. For more information on the AHN see https://ahn.nl/ahn-4.
2017 Cook County 1 ft. elevation contours in a Zipped File Geodatabase. (Clicking on link will download .zip file.) The Cook County, Illinois one foot contours were derived from a 2017 LiDAR acquisition. Details about creating the one foot contours:The contours were processed by the Cook County GIS Department in order to add contour classifications as Index Contours (every 5 feet), Intermediate Contours (every 1 foot), Index Depression Contours, and Intermediate Depression Contours. To create the classification Cook County GIS used the Identify Contour tool in ArcPro. The input was the contour feature and the 2017 DEM that was delivered along with the LiDAR data. Details about the LiDAR Acquisition:IL 4 County QL1 Lidar project called for the Planning, Acquisition, processing and derivative products of lidar data to be collected at a derived nominal pulse spacing (NPS) of 1 point every 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011), State Plane, U.S Survey Feet and vertical datum of NAVD88 (GEOID12B), U.S. Survey Feet. Lidar data was delivered as processed Classified LAS 1.4 files, formatted to 15,414 individual 2500 ft x 2500 ft tiles, as tiled Reflectance Imagery, and as tiled bare earth DEMs; all tiled to the same 2500 ft x 2500 ft schema.Ground Conditions: Lidar was collected April-May 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Ayers established a total of 66 ground control points that were used to calibrate the lidar to known ground locations established throughout the WI Kenosha-Racine Counties and IL 4 County QL1 project area. An additional 195 independent accuracy checkpoints, 116 in Bare Earth and Urban landcovers (116 NVA points), 79 in Tall Grass and Brushland/Low Trees categories (79 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the dataDetails about the DEM:To acquire detailed surface elevation data for use in conservation planning, design, research, floodplain mapping, dam safety assessments and elevation modeling, etc. Classified LAS files are used to show the manually reviewed bare earth surface. This allows the user to create Reflectance Images, Breaklines and Raster DEM. The purpose of these lidar data was to produce high accuracy 3D hydro-flattened Digital Elevation Model (DEM) with a 2 foot cell size. These raw lidar point cloud data were used to create classified lidar LAS files, Reflectance Images, 3D breaklines, 1 foot contours, and hydro-flattened DEMs as necessary.
This workflow focuses on enhancing spatial interpolation of meteorological variables by incorporating altitude. The process involves importing geolocated meteorological data from shapefiles, downloading a Digital Elevation Model (DEM) for elevation data, and utilizing 3D Kriging for interpolation. This method improves the accuracy of meteorological data interpolation across various elevations, providing comprehensive spatial coverage. Key components include precise data import, effective DEM integration, and accurate 3D Kriging, addressing scientific questions about data import precision, DEM integration, Kriging accuracy, and spatial coverage enhancement. Background Interpolating geolocated meteorological variables is crucial for obtaining comprehensive insights into environmental conditions. This workflow, comprising three components, focuses on importing shapefile data containing geolocated meteorological variables. The primary objective is to perform a 3D interpolation, considering altitude as a significant factor. To achieve this, the workflow downloads a Digital Elevation Model (DEM) to incorporate elevation information and utilizes 3D Kriging for interpolation. Introduction Interpolating meteorological variables in geospatial datasets is essential for understanding environmental conditions. This workflow aims to enhance the accuracy of such interpolations by importing shapefile data, obtaining elevation data from a DEM, and performing a 3D interpolation using Kriging. The resulting dataset provides interpolated meteorological values for locations not covered by the original sampling. Aims The primary aim of this workflow is to achieve accurate 3D interpolation of meteorological variables, considering altitude, to enhance spatial coverage. The workflow includes the following key components: ∙Shapefile Data Import: Imports geolocated meteorological variables from a shapefile, preparing the data for 3D interpolation. ∙Digital Elevation Model (DEM) Download: Downloads a Digital Elevation Model (DEM) to obtain elevation information for the interpolation process. ∙3D Kriging Interpolation: Utilizes 3D Kriging to interpolate meteorological variables, incorporating altitude information for enhanced accuracy. Scientific questions ∙Data Import Precision: How precise is the workflow in importing geolocated meteorological variables from the shapefile data? ∙DEM Download and Integration: How effectively does the workflow download the DEM and integrate elevation information into the interpolation process? ∙3D Kriging Accuracy: How accurate is the 3D Kriging interpolation in providing reliable meteorological values, considering altitude as a key factor? ∙Enhancement of Spatial Coverage: To what extent does the 3D interpolation process enhance spatial coverage, providing interpolated values for locations not originally sampled?
The ALOS Global Digital Surface Model (AW3D30) is a global dataset generated from images collected using the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) aboard the Advanced Land Observing Satellite (ALOS) from 2006 to 2011. As described by the Japan Aerospace Exploration Agency: The Japan Aerospace Exploration Agency (JAXA) releases the global digital surface model (DSM) dataset with a horizontal resolution of approx. 30-meter mesh (1 arcsec) free of charge. The dataset has been compiled with images acquired by the Advanced Land Observing Satellite "DAICHI" (ALOS). The dataset is published based on the DSM dataset (5-meter mesh version) of the "World 3D Topographic Data", which is the most precise global-scale elevation data at this time, and its elevation precision is also at a world-leading level as a 30-meter mesh version. This dataset is expected to be useful for scientific research, education, as well as the private service sector that uses geospatial information. Version: As of May 24th 2021 OpenTopography is supplying V3.2 (Jan 2021) from: ftp://ftp.eorc.jaxa.jp//pub/ALOS/ext1/AW3D30/release_v2012_single_format/ Data downloaded prior to May 24th 2021 was in format: May 2016: Global terrestrial region (within approx. 82 deg. of N/S latitudes) of Version 1 released (approx. 22,100 tiles) Note: JAXA provides two versions of AW3D30 created from the original 5-meter mesh using different downsampling methods: average (provided here) and median (not available from OpenTopography).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
This Digital Elevation model is part of the the USGS 3D Elevation Program (3DEP) Index service from The National Map.
The 1/3-arc-second products are staged for download in 1x1 degree tiles in ArcGrid, GridFloat, or IMG formats.
The National Map shows two general categories of downloadable elevation data: (1) digital elevation model (DEM) datasets at standardized horizontal resolutions, and (2) elevation source data including that used to produce standard DEMs, and additional datasets derived from ifsar in Alaska only. Distributable DEM products include: 2 arc-second (in Alaska only); 1 arc-second; 1/3 arc-second; 1/9 arc-second; 5 meter (in Alaska only); and 1 meter. The 2-, 1-, and 1/3-arc-second products are staged for download in 1x1 degree tiles in ArcGrid, GridFloat, or IMG formats, while 1/9 arc-second products are staged in 15x15 minute tiles in IMG format only. The 5-meter products are staged for download in ArcGrid only as a single mosaicked raster to each project extent. The 1-meter products are staged in 10,000x10,000 meter tiles in IMG format only. Distributable elevation source data include: lidar point clouds (LPC) in LAS format for various parts of the U.S., and ifsar-derived digital surface models (DSM) and orthorectified radar images (ORI) in TIFF format in Alaska only. For additional information on the 3DEP, go to http://nationalmap.gov/3DEP/index.html.
The USGS NHDPlus High Resolution service, NHDPlus_HR, a part of The National Map, is a comprehensive set of digital spatial data comprising a nationally seamless network of stream reaches, elevation-based catchment areas, flow surfaces, and value-added attributes that enhance stream network navigation, analysis, and data display. NHDPlus High Resolution (NHDPlus HR) is a scalable geospatial hydrography framework built from the high resolution National Hydrography Dataset, nationally complete Watershed Boundary Dataset, and 3D Elevation Program (3DEP) ? arc-second (10 meter ground spacing) digital elevation model data. The National Map download client allows free downloads of public domain NHDPlus HR data in Esri File Geodatabase format. For additional information on the NHDPlus HR, go to https://nhd.usgs.gov.
Statewide Ecopia 3 foot Land Cover (2021-2022)This raster land cover data is based off of high-resolution statewide imagery from 2021-2022. It was used by Ecopia to extract and digitize the entire state into 7 different land cover classes. Download Notes:This service can be entered into ArcGIS Pro where "Download Rasters" can be used to download approximately 20 square miles at a time. (Rt. click layer in TOC > Data > Download Rasters)Alternatively, the entire statewide 3ft dataset is available as a zipped download from here (includes colormap file): Ecopia_Statewide_3ft_Raster_TilesClasses available at bottom of this pages.Data SpecificationImagery Used for Extraction: Pixel resolution: 15 cm (6")Camera sensor: Hexagon Pushbroom (Content Mapper)Date of capture: 06/25/2021 - 08/14/2022Date of Vector Extraction: June 2023Extraction Methodology:Ecopia uses proprietary extraction and modeling software to process raw images into high-resolution land cover classifications.Quality Measurements:Measure Name - Threshold across Impervious Polygons:False Negatives <= 5% All PolygonsFalse Positives <= 5% All PolygonsValid Interpretation >= 95% All PolygonsMinimum Area 100% All PolygonsValid Geometry 100% All PolygonsMeasure Name - Threshold across Natural Polygons:False Negatives <=5% All PolygonsFalse Positives <=5% All PolygonsValid Interpretation >=90% All PolygonsMinimum Area 100% All PolygonsValid Geometry 100% All PolygonsLand Cover Classes:UnclassifiedImperviousImpervious, covered by treesShrub/low vegetationTree/forest/high vegetationOpen waterRailroadVegetation (Canopy Mapping)Tree canopy will be captured as a unique polygon layer. It can therefore overlap impervious layers.High vegetation is distinguished from low vegetation based on crown, texture, and derived height models. Leveraging stereo imagery produces results using 3D elevation models used to aid the distinction of vegetation categories. Distinguishing low from high vegetation is based on a 5m threshold, but this is not always feasible, especially in areas where heavy canopy prevents a visualization of the ground. In these circumstances, high vegetation will be given the priority over low vegetation. For more information visit: www.ecopiatech.comClasses:0: No data - Null, clear1: Unclassified2: Impervious3: Impervious, Covered by Tree Canopy6: Shrub/Low Vegetation7: Tree/Forest/High Vegetation8: Open Water12: Railroad
https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf
CartoSat-1 (also known as IRS-P5) archive products are available as PAN-Aft (backward), PAN-Fore (forward) and Stereo (PAN-Aft and PAN-Fore). Sensor Products Type Resolution (m) Coverage (km x km) System or radiometrically corrected Ortho corrected (DN) Neustralitz archive Global archive PAN PAN-Aft (backward) PAN-Fore (forward) Stereo (PAN-Aft+PAN-Fore) Panchromatic 2.5 27 x 27 X X 2007 - 2016 2005 - 2019 Note: Resolution 2.5 m. - Coverage 27 km x 27 km System or radiometrically corrected. For Ortho corrected products, if unavailable, user has to supply ground control information and DEM in suitable quality For Stereo ortho corrected: only one of the datasets will be ortho corrected. Euro-Maps 3D is a homogeneous, 5 m spaced digital surface model (DSM) semi-automatically derived from 2.5 m in-flight stereo data provided by IRS-P5 CartoSat-1 and developed in cooperation with the German Aerospace Center, DLR. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. Product Overview Post spacing 5 m Spatial reference system DD, UTM or other projections on WGS84 Height reference system EGM96 Absolute vertical accuracy LE90 5-10 m Absolute Horizontal Accuracy CE90 5-10 m Relative vertical accuracy LE90 2.5 m File format GeoTIFF, 16 bit Tiling 0.5° x 0.5° Ortho Layer Pixel Size 2.5 m The CartoSat-1 products and Euro-Maps 3D are available as part of the GAF Imagery products from the Indian missions: IRS-1C, IRS-1D, CartoSat-1 (IRS-P5), ResourceSat-1 (IRS-P6) and ResourceSat-2 (IRS-R2) missions. Euro-Maps 3D available data map
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.