100+ datasets found
  1. h

    churn-prediction

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    scikit-learn, churn-prediction [Dataset]. https://huggingface.co/datasets/scikit-learn/churn-prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset authored and provided by
    scikit-learn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Customer churn prediction dataset of a fictional telecommunication company made by IBM Sample Datasets. Context Predict behavior to retain customers. You can analyze all relevant customer data and develop focused customer retention programs. Content Each row represents a customer, each column contains customer’s attributes described on the column metadata. The data set includes information about:

    Customers who left within the last month: the column is called Churn Services that each customer… See the full description on the dataset page: https://huggingface.co/datasets/scikit-learn/churn-prediction.

  2. Real World Customer Churn Dataset

    • kaggle.com
    Updated Oct 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lasal Jayawardena (2023). Real World Customer Churn Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/6787676
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Lasal Jayawardena
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    60,000+ Real Anonymized Customer Usage Data for Churn Prediction!

    Dataset Information

    • Dataset Name: Real World Customer Churn Dataset in Telco Domain
    • Snapshot Period: January 1, 2023, to March 31, 2023
    • Source: One of the Largest Telco Companies in Sri Lanka
    • Data Anonymization: The Dataset is Anonymized to Protect Customer Privacy.

    Overview

    The "Real World Customer Churn Dataset in Telco Domain" is a comprehensive collection of anonymized data that provides insights into customer behavior and churn prediction within the telecommunications industry.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F6361330%2F860271e0362e6c10503889f289201402%2FCustomer-churn.jpg?generation=1698182677600097&alt=media" alt="Dataset Image">

    Usage Categories

    The dataset contains data on over 60,000 customers across more than 10+ distinct usage categories. Some of the key usage categories include:

    • usage_app_youtube_daily: YouTube Traffic in MBs.
    • usage_app_facebook_daily: Facebook Traffic in MBs.
    • usage_app_tiktok_daily: TikTok Traffic in MBs.
    • usage_app_whatsapp_daily: WhatsApp Traffic in MBs.
    • usage_app_helakuru_daily: Helakuru App traffic in MBs.
    • usage_voice_o2o_outgoing: Outgoing call volume in minutes between the same operator.
    • usage_voice_o2op_outgoing: Outgoing call volume in minutes between operator and other operators.
    • usage_voice_o2o_incoming: Incoming call volume in minutes between the same operator.
    • usage_voice_op2o_incoming: Incoming call volume in minutes between other operator to operator.
    • usage_pack_data: Spend in LKR for data package purchasing.
    • usage_pack_vas: Spend in LKR for value-added service rentals or usage.

    Dataset Files

    The dataset consists of the following key files:

    1. main.csv: An aggregated dataset that compiles usage data from all usage categories, providing a holistic view of customer behavior.
    2. raw_dump folder: The raw data export, preserving the original source data for detailed exploration.
    3. test and train folders: These folders contain customer IDs and corresponding Churn Labels, facilitating model training and testing.
    4. usage_profiles folder: It comprises broken-down data frames for each customer under specific usage categories, allowing in-depth analysis of individual customer behavior within various usage categories.

    Potential Use Cases

    The "Real World Customer Churn Dataset in Telco Domain" offers a range of potential use cases, including:

    • Customer Churn Prediction: Leveraging customer usage patterns to predict and reduce churn.
    • Targeted Marketing: Designing customized marketing campaigns based on customer preferences.
    • Service Quality Enhancement: Identifying areas for service improvement, such as network quality.
    • Revenue Optimization: Maximizing revenue through the analysis of data package spending and value-added service usage.

    Dataset Importance

    This dataset's real-world aspect is of significant importance. It reflects actual customer interactions with a major telecommunications company in Sri Lanka, offering insights that can be directly applied to real-world scenarios. The dataset is sourced from one of the largest telco companies in the country, adding credibility and relevance to the insights it provides.

    Understanding customer churn and usage behavior is pivotal for the telecommunications industry, and this dataset empowers researchers, data scientists, and businesses to gain deeper insights into these aspects.

    Disclaimer

    The dataset is anonymized to protect customer privacy, and all data used is in compliance with privacy regulations and agreements. Users are encouraged to explore and contribute to the "Real World Customer Churn Dataset in Telco Domain."

    Thank you for your valuable contributions to this dataset.

  3. Gym customers features and churn

    • kaggle.com
    Updated Jun 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adrian Vinueza (2024). Gym customers features and churn [Dataset]. https://www.kaggle.com/datasets/adrianvinueza/gym-customers-features-and-churn
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Adrian Vinueza
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    "It's necessary to implement an effective customer retention strategy through data analysis. The main goal is to predict the probability of customer churn for the next month, identify key customer profiles, and develop specific recommendations to improve customer retention and satisfaction. This will enable optimizing the customer experience and strengthening their loyalty."

  4. c

    Data from: Telco Customer Churn Dataset

    • cubig.ai
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2024). Telco Customer Churn Dataset [Dataset]. https://cubig.ai/store/products/312/telco-customer-churn-dataset
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Telco Customer Churn Dataset includes carrier customer service usage, account information, demographics and churn, which can be used to predict and analyze customer churn.

    2) Data Utilization (1) Telco Customer Churn Dataset has characteristics that: • This dataset includes a variety of customer and service characteristics, including gender, age group, partner and dependents, service subscription status (telephone, Internet, security, backup, device protection, technical support, streaming, etc.), contract type, payment method, monthly fee, total fee, and departure. (2) Telco Customer Churn Dataset can be used to: • Development of customer churn prediction model: Using customer service usage patterns and account information, we can build a machine learning-based churn prediction model to proactively identify customers at risk of churn.

  5. t

    Telco_Customer_churn_Data

    • test.researchdata.tuwien.at
    bin, csv, png
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erum Naz; Erum Naz; Erum Naz; Erum Naz (2025). Telco_Customer_churn_Data [Dataset]. http://doi.org/10.82556/b0ch-cn44
    Explore at:
    png, csv, binAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Erum Naz; Erum Naz; Erum Naz; Erum Naz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 28, 2025
    Description

    Context and Methodology

    The dataset originates from the research domain of Customer Churn Prediction in the Telecom Industry. It was created as part of the project "Data-Driven Churn Prediction: ML Solutions for the Telecom Industry," completed within the Data Stewardship course (Master programme Data Science, TU Wien).

    The primary purpose of this dataset is to support machine learning model development for predicting customer churn based on customer demographics, service usage, and account information.
    The dataset enables the training, testing, and evaluation of classification algorithms, allowing researchers and practitioners to explore techniques for customer retention optimization.

    The dataset was originally obtained from the IBM Accelerator Catalog and adapted for academic use. It was uploaded to TU Wien’s DBRepo test system and accessed via SQLAlchemy connections to the MariaDB environment.

    Technical Details

    The dataset has a tabular structure and was initially stored in CSV format. It contains:

    • Rows: 7,043 customer records

    • Columns: 21 features including customer attributes (gender, senior citizen status, partner status), account information (tenure, contract type, payment method), service usage (internet service, streaming TV, tech support), and the target variable (Churn: Yes/No).

    Naming Convention:

    • The table in the database is named telco_customer_churn_data.

    Software Requirements:

    • To open and work with the dataset, any standard database client or programming language supporting MariaDB connections can be used (e.g., Python etc).

    • For machine learning applications, libraries such as pandas, scikit-learn, and joblib are typically used.

    Additional Resources:

    Further Details

    When reusing the dataset, users should be aware:

    • Licensing: The dataset is shared under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    • Use Case Suitability: The dataset is best suited for classification tasks, particularly binary classification (churn vs. no churn).

    • Metadata Standards: Metadata describing the dataset adheres to FAIR principles and is supplemented by CodeMeta and Croissant standards for improved interoperability.

  6. c

    Data from: Customer Churn Dataset

    • cubig.ai
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Customer Churn Dataset [Dataset]. https://cubig.ai/store/products/256/customer-churn-dataset
    Explore at:
    Dataset updated
    May 25, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The Customer Churn Dataset is a dataset that collects various customer characteristics and service usage information to predict whether or not communication service customers will turn.

    2) Data Utilization (1) Customer Churn Dataset has characteristics that: • The dataset consists of several categorical and numerical variables, including customer demographics, service types, contract information, charges, usage patterns, and Turn. (2) Customer Churn Dataset can be used to: • Development of customer churn prediction model : Machine learning and deep learning techniques can be used to develop classification models that predict churn based on customer characteristics and service use data. • Segmenting customers and developing marketing strategies : It can be used to analyze customer groups at high risk of departure and to design custom retention strategies or targeted marketing campaigns.

  7. Data from: 📊 Telco Customer Churn Dataset

    • kaggle.com
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soulz (2025). 📊 Telco Customer Churn Dataset [Dataset]. https://www.kaggle.com/datasets/jethwaaatmik/telco-customer-churn-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Soulz
    Description

    📝 Dataset Description This dataset contains information about customers of a telecommunications company, including their demographic details, account information, service subscriptions, and churn status. It is a modified version of the popular Telco Churn dataset, curated for exploratory data analysis, machine learning model development, and churn prediction tasks.

    The dataset includes simulated missing values in some columns to reflect real-world data issues and support preprocessing and imputation tasks. This makes it especially useful for demonstrating data cleaning techniques and evaluating model robustness.

    📂 Files Included telco_data_modified.csv: The main dataset with 21 columns and 7043 rows (some missing values are intentionally inserted).

    📌 Features Column Name Description customerID Unique identifier for each customer gender Customer gender: Male/Female SeniorCitizen Indicates if the customer is a senior citizen (0 = No, 1 = Yes) Partner Whether the customer has a partner Dependents Whether the customer has dependents tenure Number of months the customer has stayed with the company PhoneService Whether the customer has phone service MultipleLines Whether the customer has multiple lines InternetService Customer's internet service provider (DSL, Fiber optic, No) OnlineSecurity Whether the customer has online security OnlineBackup Whether the customer has online backup DeviceProtection Whether the customer has device protection TechSupport Whether the customer has tech support StreamingTV Whether the customer has streaming TV StreamingMovies Whether the customer has streaming movies Contract Type of contract: Month-to-month, One year, Two year PaperlessBilling Whether the customer uses paperless billing PaymentMethod Payment method: (e.g., Electronic check, Mailed check, etc.) MonthlyCharges Monthly charges TotalCharges Total charges to date Churn Whether the customer has left the company (Yes/No)

    🔍 Use Cases Binary classification: Predict customer churn

    Data preprocessing and imputation exercises

    Feature engineering and importance analysis

    Customer segmentation and churn modeling

    ⚠️ Notes Missing values were intentionally inserted in the dataset to help simulate real-world conditions.

    Some preprocessing may be required before modeling (e.g., converting categorical to numerical data, handling TotalCharges as numeric).

    🏷️ Tags

    telecom #churn #classification #customer-analytics #data-cleaning #feature-engineering

    🙏 Acknowledgements This dataset is based on the original Telco Customer Churn dataset (initially provided by IBM). The current version has been modified for academic and practical exercises.

  8. C

    Customer Churn Analysis Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Customer Churn Analysis Software Report [Dataset]. https://www.datainsightsmarket.com/reports/customer-churn-analysis-software-1390551
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jul 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Customer Churn Analysis Software market is experiencing robust growth, driven by the increasing need for businesses to understand and mitigate customer attrition. The market's expansion is fueled by several factors, including the rising adoption of cloud-based solutions, the proliferation of big data analytics, and the growing demand for predictive analytics capabilities to proactively identify at-risk customers. Businesses across diverse sectors, including SaaS, e-commerce, and telecommunications, are increasingly leveraging these sophisticated tools to gain actionable insights into customer behavior, personalize their offerings, and improve customer retention strategies. This market is characterized by a competitive landscape with both established players like Adobe and Google, and specialized niche providers such as Infer and Churnly Technologies Limited. The integration of AI and machine learning capabilities within these platforms is a prominent trend, enabling more accurate prediction models and automated interventions to reduce churn. While the initial investment in such software can be a restraint for some smaller businesses, the long-term return on investment, in terms of improved customer retention and reduced acquisition costs, is a compelling driver for market growth. The forecast period (2025-2033) is expected to witness significant expansion, building upon the historical growth from 2019-2024. Assuming a conservative CAGR (let's estimate it at 15% based on industry trends), and a 2025 market size of $5 billion (a reasonable estimate given the presence of major players and the importance of the sector), the market is projected to reach approximately $17 billion by 2033. This expansion will be propelled by continuous technological advancements, the growing adoption of subscription-based business models, and a heightened focus on customer experience management across industries. Regional variations will likely exist, with North America and Europe leading the market initially due to higher adoption rates and technological infrastructure, but emerging markets in Asia-Pacific are expected to show significant growth in the later years of the forecast period. The competitive landscape will remain dynamic, with mergers, acquisitions, and the emergence of innovative solutions shaping the future of customer churn analysis software.

  9. D

    Customer Churn Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Customer Churn Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/customer-churn-software-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Oct 5, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Customer Churn Software Market Outlook



    The global customer churn software market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 4.8 billion by 2032, growing at a CAGR of 13.7% during the forecast period. This robust growth is driven by several factors, including the increasing importance of customer retention in competitive markets, advancements in AI and machine learning technologies, and the growing adoption of digital transformation initiatives across industries.



    One of the primary growth factors propelling the customer churn software market is the increasing emphasis on customer satisfaction and retention. In today's highly competitive business environment, retaining existing customers is more cost-effective than acquiring new ones. Companies are realizing the value of customer loyalty, and as a result, they are investing heavily in tools that can help predict and mitigate churn. Customer churn software offers advanced analytics and predictive capabilities, enabling organizations to identify at-risk customers and take proactive measures to retain them.



    Another significant driver is the advancement in artificial intelligence (AI) and machine learning technologies. These technologies have revolutionized the way customer data is analyzed and interpreted. AI-powered customer churn software can process vast amounts of data from multiple sources, identify patterns, and generate actionable insights. This ability to leverage big data and predictive analytics is crucial for businesses aiming to stay ahead of the competition. As AI and machine learning continue to evolve, the effectiveness and efficiency of customer churn software are expected to improve further.



    The increasing adoption of digital transformation initiatives across various industries is also contributing to the market growth. As businesses undergo digital transformation, they generate enormous amounts of data related to customer behavior, preferences, and interactions. Customer churn software helps organizations make sense of this data, enabling them to develop personalized strategies to enhance customer experience and loyalty. The shift towards data-driven decision-making is compelling companies to invest in advanced analytics solutions, thereby driving the demand for customer churn software.



    From a regional perspective, North America holds a significant share of the customer churn software market, driven by the presence of major technology companies and the early adoption of advanced analytics solutions. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period. Factors such as the rapid digitalization of economies, increasing investments in AI and machine learning, and the growing focus on customer-centric strategies in emerging markets are fueling the demand for customer churn software in this region.



    Component Analysis



    The customer churn software market is segmented into two primary components: software and services. The software segment includes the actual customer churn solutions, while the services segment encompasses implementation, training, support, and consulting services. The software segment is expected to dominate the market due to the high demand for advanced analytics and predictive tools. Companies across various industries are increasingly adopting software solutions to gain insights into customer behavior and predict churn. The software segment's growth is further supported by continuous advancements in AI and machine learning technologies, which enhance the capabilities of customer churn solutions.



    The services segment, although smaller in comparison to the software segment, plays a crucial role in the market. Services such as implementation and training ensure that organizations can effectively deploy and utilize customer churn software. Support and consulting services are equally important, as they help companies optimize their software usage and develop customized strategies to address specific churn-related challenges. The demand for these services is expected to grow in tandem with the adoption of customer churn software, as businesses seek to maximize their return on investment and achieve better customer retention outcomes.



    Moreover, the integration of customer churn software with existing CRM systems and other business applications is becoming increasingly important. This integration enables a seamless flow of data and enhances the overall efficiency of customer retention efforts. As a result, solutions that offer robust integration capa

  10. Churn Modelling - Classification Training

    • kaggle.com
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aly El-badry (2025). Churn Modelling - Classification Training [Dataset]. https://www.kaggle.com/datasets/alyelbadry/churn-modelling-cluster-training
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 28, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aly El-badry
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Customer Churn Modelling

    This dataset provides comprehensive information about a bank's customers, focusing on their demographic, financial, and account activity details. It is designed to help analyze factors influencing customer churn and develop predictive models for customer retention strategies.

    Dataset Highlights:

    • Customer Demographics: Information such as Gender, Age, and Geographic Location (e.g., country) helps identify trends and patterns in churn across different customer segments.
    • Financial Data:
      • Credit Score: A measure of creditworthiness.
      • Balance: Account balance details for each customer.
      • Estimated Salary: Insights into customers' earning potential.
    • Account Features:
      • Number of Products: Count of products the customer is subscribed to (e.g., savings accounts, loans).
      • IsActiveMember: Indicates if the customer is actively using the bank’s services.
      • HasCrCard: Identifies customers with a credit card.
    • Churn Label: A binary indicator specifying whether the customer exited (1) or stayed (0).
    • Tenure: Duration (in years) the customer has been associated with the bank.

    Unique Features:

    • The dataset is highly structured, making it ideal for cluster tasks.
    • Balanced mix of numerical and categorical features, enabling both exploratory data analysis (EDA) and advanced machine learning models.
    • Offers insights into customer behavior and retention strategies.

    Suggested Use Cases:

    • Customer Retention Analysis: Explore demographic and financial factors influencing churn rates.
    • Predictive Modeling: Build machine learning models to predict churn and identify at-risk customers.
    • Business Insights: Develop strategies for targeted marketing or improving customer loyalty.
    • Feature Engineering: Generate new features to enhance prediction accuracy (e.g., balance-to-salary ratio).

    This dataset is perfect for beginners and professionals alike to explore customer churn prediction, develop insights, and create impactful business solutions.

  11. G

    AI-Powered Customer Churn Prediction Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). AI-Powered Customer Churn Prediction Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/ai-powered-customer-churn-prediction-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI-Powered Customer Churn Prediction Market Outlook




    According to our latest research, the AI-powered customer churn prediction market size reached USD 1.96 billion globally in 2024, with a robust CAGR of 18.3% projected through the forecast period. By 2033, the market is expected to hit USD 8.87 billion, driven by the increasing adoption of AI and machine learning solutions across multiple industries to proactively manage and reduce customer attrition. The rapid digital transformation and the growing emphasis on customer experience optimization have emerged as primary growth factors fueling the expansion of this dynamic market.




    One of the core growth factors propelling the AI-powered customer churn prediction market is the exponential increase in customer data generation across industries. As businesses increasingly digitize their operations, vast amounts of customer interactions, behavioral data, and transactional records are being accumulated every day. AI-powered churn prediction tools leverage advanced analytics and machine learning algorithms to extract actionable insights from this data, allowing companies to identify at-risk customers with high accuracy. This enables organizations to implement timely retention strategies, reduce churn rates, and ultimately boost long-term profitability. The continuous evolution of AI algorithms, including deep learning and natural language processing, further enhances the predictive capabilities of these solutions, making them indispensable in highly competitive sectors such as telecommunications, BFSI, and retail.




    Another significant driver is the escalating demand for personalized customer experiences. Modern consumers expect brands to anticipate their needs and deliver tailored interactions across all touchpoints. AI-powered customer churn prediction systems empower businesses to segment their customer base, understand individual preferences, and proactively address potential pain points. This targeted approach not only improves customer satisfaction but also increases the effectiveness of marketing campaigns and retention efforts. Moreover, the integration of AI with CRM platforms and omnichannel engagement tools has streamlined the deployment of churn prediction models, making them accessible even to small and medium-sized enterprises. The ability to automate and scale these insights across large customer populations is a critical factor stimulating market growth.




    The rising cost of customer acquisition compared to retention is also amplifying the importance of AI-powered churn prediction solutions. As competition intensifies and customer loyalty becomes harder to secure, organizations are prioritizing strategies that maximize the lifetime value of existing clients. AI-driven churn analytics provide a cost-effective means to identify early warning signals and intervene before customers decide to leave. This not only reduces the financial impact of churn but also enhances brand reputation and customer advocacy. The scalability, real-time processing, and predictive accuracy offered by AI solutions are attracting investments from both established enterprises and emerging startups, further accelerating market expansion.




    Regionally, North America continues to dominate the AI-powered customer churn prediction market, accounting for the largest revenue share in 2024. The regionÂ’s advanced technological infrastructure, high digital adoption rates, and concentration of leading AI vendors are key contributors to its leadership position. However, the Asia Pacific region is poised for the fastest growth, fueled by the rapid digitization of economies, increasing mobile and internet penetration, and rising investments in AI and analytics by enterprises. Europe also presents significant opportunities, particularly in sectors like BFSI and retail, where regulatory pressures and customer-centricity are driving early adoption of churn prediction tools. The market landscape in Latin America and the Middle East & Africa is evolving, with organizations gradually recognizing the value of proactive churn management in enhancing competitiveness and customer loyalty.



    The telecommunications industry, in particular, has been at the forefront of adopting AI-powered churn prediction tools due to its high customer turnover rates and competitive market dynamics. <a href="https://growthmarketreports.com

  12. D

    AI-Powered Customer Churn Prediction Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). AI-Powered Customer Churn Prediction Market Research Report 2033 [Dataset]. https://dataintelo.com/report/ai-powered-customer-churn-prediction-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI-Powered Customer Churn Prediction Market Outlook




    According to our latest research, the AI-powered customer churn prediction market size reached USD 1.58 billion globally in 2024, with a robust CAGR of 19.7% expected from 2025 to 2033. Driven by rapid digital transformation and the increasing need for predictive analytics across sectors, the market is forecasted to attain a value of USD 7.57 billion by 2033. The growth of this market is primarily attributed to the escalating adoption of AI and machine learning technologies by enterprises seeking to reduce customer attrition, optimize retention strategies, and enhance overall customer lifetime value, as per the latest industry research.




    One of the fundamental growth drivers for the AI-powered customer churn prediction market is the proliferation of customer data and the imperative need for businesses to leverage this data to drive actionable insights. With the advent of digital touchpoints, organizations are now able to collect vast amounts of structured and unstructured data from various customer interactions. This data, when processed using advanced AI and machine learning algorithms, empowers companies to predict potential churn with high accuracy. As a result, businesses across industries such as telecommunications, BFSI, retail, and healthcare are increasingly investing in AI-powered churn prediction solutions to proactively identify at-risk customers and implement targeted retention strategies, thereby reducing revenue loss and improving profitability.




    Another significant factor fueling market expansion is the growing emphasis on customer experience and personalization. In today's hyper-competitive landscape, retaining existing customers has become more cost-effective than acquiring new ones. AI-powered churn prediction tools enable organizations to segment their customer base, understand behavior patterns, and tailor interventions for individual customers. This level of personalization not only helps in reducing churn rates but also enhances customer satisfaction and loyalty. The integration of AI-driven insights into CRM systems and marketing automation platforms further streamlines the process, making it easier for businesses to act on predictions in real time. Moreover, the rising adoption of cloud-based solutions has made these technologies more accessible to small and medium enterprises (SMEs), broadening the market’s reach.




    The surge in demand for scalable, real-time analytics platforms is also contributing to market growth. Enterprises are increasingly seeking AI-powered solutions that can integrate seamlessly with their existing IT infrastructure, deliver instant insights, and scale as their data grows. The shift towards cloud deployment models has accelerated this trend, offering cost-effective, flexible, and easily deployable churn prediction solutions. Additionally, advancements in natural language processing (NLP), deep learning, and big data analytics are further enhancing the accuracy and reliability of churn prediction models. As organizations strive to stay ahead of the competition by minimizing customer attrition, the demand for sophisticated, AI-driven predictive analytics tools continues to rise.




    Regionally, North America holds the largest market share, followed by Europe and Asia Pacific. The dominance of North America can be attributed to the early adoption of AI technologies, presence of major technology vendors, and a strong focus on customer-centric strategies among enterprises in the region. Europe is also witnessing significant growth, driven by stringent regulations around data protection and a growing emphasis on customer retention in industries like BFSI and retail. The Asia Pacific region is expected to exhibit the highest CAGR during the forecast period, fueled by rapid digitalization, increasing investments in AI, and the expansion of e-commerce and telecommunications sectors. Latin America and the Middle East & Africa are also experiencing gradual adoption, primarily in financial services and telecommunications.



    Component Analysis




    The component segment of the AI-powered customer churn prediction market is categorized into software and services. The software segment dominates the market, accounting for the largest share in 2024, owing to the widespread deployment of advanced AI and machine learning platforms

  13. C

    Customer Churn Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Customer Churn Software Report [Dataset]. https://www.datainsightsmarket.com/reports/customer-churn-software-1412264
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Customer Churn Software market is experiencing robust growth, driven by the increasing need for businesses to retain customers and improve profitability. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $45 billion by 2033. This expansion is fueled by several key factors: the rising adoption of cloud-based solutions offering scalability and cost-effectiveness, the increasing availability of sophisticated analytics and AI-powered prediction models enabling proactive churn management, and the growing focus on delivering personalized customer experiences to enhance loyalty. Major players like IBM, Adobe, Salesforce, and Microsoft are actively shaping the market through continuous innovation and strategic acquisitions, contributing to a competitive landscape that fosters further growth. However, the market also faces certain restraints. The high initial investment costs associated with implementing sophisticated churn prediction software can be a barrier for smaller businesses. Furthermore, the complexity of integrating these solutions with existing CRM and data management systems can pose challenges, requiring significant expertise and resources. Despite these challenges, the long-term benefits of reduced customer churn significantly outweigh the initial investment, driving market expansion. The segmentation within the market is diverse, encompassing solutions catering to specific industry verticals and customer sizes, allowing for targeted solutions addressing unique churn drivers within each sector. The increasing prevalence of subscription-based business models further fuels the demand for effective churn management tools.

  14. Data from: A Proposed Churn Prediction Model

    • figshare.com
    pdf
    Updated Feb 24, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mona Nasr; Essam Shaaban; Yehia Helmy; Dr. Ayman Khedr (2019). A Proposed Churn Prediction Model [Dataset]. http://doi.org/10.6084/m9.figshare.7763183.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 24, 2019
    Dataset provided by
    figshare
    Authors
    Mona Nasr; Essam Shaaban; Yehia Helmy; Dr. Ayman Khedr
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Churn prediction aims to detect customers intended to leave a service provider. Retaining one customer costs an organization from 5 to 10 times than gaining a new one. Predictive models can provide correct identification of possible churners in the near future in order to provide a retention solution. This paper presents a new prediction model based on Data Mining (DM) techniques. The proposed model is composed of six steps which are; identify problem domain, data selection, investigate data set, classification, clustering and knowledge usage. A data set with 23 attributes and 5000 instances is used. 4000 instances used for training the model and 1000 instances used as a testing set. The predicted churners are clustered into 3 categories in case of using in a retention strategy. The data mining techniques used in this paper are Decision Tree, Support Vector Machine and Neural Network throughout an open source software name WEKA.

  15. G

    Customer Churn Prediction for Banking Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Customer Churn Prediction for Banking Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/customer-churn-prediction-for-banking-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Customer Churn Prediction for Banking Market Outlook




    According to our latest research, the global Customer Churn Prediction for Banking market size is valued at USD 2.67 billion in 2024, with a robust compound annual growth rate (CAGR) of 19.3% expected from 2025 to 2033. By the end of this forecast period, the market is projected to reach USD 12.57 billion. This remarkable growth is primarily driven by the accelerating adoption of advanced analytics and artificial intelligence technologies within the banking sector, as institutions strive to enhance customer experience, reduce churn rates, and maintain a competitive edge in a rapidly evolving digital landscape. As per our latest research, the marketÂ’s expansion is further fueled by the increasing need for data-driven decision-making and the integration of predictive analytics into core banking processes.




    One of the major growth factors propelling the Customer Churn Prediction for Banking market is the exponential rise in digital banking activities and the corresponding surge in customer data availability. The proliferation of online and mobile banking platforms has led to an unprecedented volume of customer interactions, transactions, and behavioral data. Banks are leveraging this data to deploy sophisticated churn prediction models that identify at-risk customers with high accuracy. The shift towards digital channels has also heightened customer expectations for personalized services and seamless experiences, making it imperative for banks to proactively address churn risks. This trend is particularly pronounced among younger, tech-savvy demographics who are more likely to switch providers if their needs are not met, emphasizing the critical role of churn prediction in customer retention strategies.




    Furthermore, regulatory pressures and the growing emphasis on customer-centricity are compelling banks to invest heavily in churn prediction solutions. Regulatory frameworks such as the General Data Protection Regulation (GDPR) and various consumer protection laws require banks to demonstrate transparency and accountability in their customer interactions. Predictive churn analytics not only help in identifying dissatisfied customers but also enable banks to tailor interventions that align with regulatory requirements and ethical standards. Additionally, the competitive intensity in the banking sector is at an all-time high, with both traditional banks and fintech disruptors vying for market share. As a result, the ability to predict and mitigate customer churn has become a strategic imperative, driving sustained investments in advanced analytics, machine learning, and artificial intelligence technologies.




    Another significant growth driver is the increasing integration of customer churn prediction tools with broader risk management and fraud detection frameworks. Banks are recognizing the interconnectedness between customer attrition, risk exposure, and fraudulent activities. By embedding churn prediction capabilities into enterprise risk management systems, banks can not only retain valuable customers but also proactively identify patterns indicative of potential fraud or financial distress. This holistic approach enhances operational efficiency, reduces losses, and supports the overall stability of banking operations. The demand for scalable, real-time analytics platforms that can process vast datasets and deliver actionable insights is therefore surging, further boosting the growth trajectory of the Customer Churn Prediction for Banking market.



    In the realm of retail banking, the application of Retention Analytics is becoming increasingly pivotal. As banks amass vast amounts of customer data from various digital touchpoints, the ability to analyze and interpret this data is crucial for maintaining customer loyalty. Retention Analytics for Retail Banking involves leveraging sophisticated algorithms and machine learning models to identify patterns and predict customer behavior. By doing so, banks can tailor their services and offerings to meet the specific needs of their customers, thereby enhancing satisfaction and reducing churn. This proactive approach not only helps in retaining existing customers but also in attracting new ones by showcasing a commitment to personalized service.




    From a regional perspective, North Ameri

  16. Customer Churn Prediction Datasets

    • kaggle.com
    zip
    Updated Oct 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Al Amin (2020). Customer Churn Prediction Datasets [Dataset]. https://www.kaggle.com/alaminbhuyan/customer-churn-prediction-datasets
    Explore at:
    zip(175743 bytes)Available download formats
    Dataset updated
    Oct 17, 2020
    Authors
    Al Amin
    Description

    Dataset

    This dataset was created by Al Amin

    Contents

    It contains the following files:

  17. A

    ‘Customer Churn’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Customer Churn’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-customer-churn-ffb7/3502dae8/?iid=014-702&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Customer Churn’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/hassanamin/customer-churn on 13 November 2021.

    --- Dataset description provided by original source is as follows ---

    Binary Customer Churn

    A marketing agency has many customers that use their service to produce ads for the client/customer websites. They've noticed that they have quite a bit of churn in clients. They basically randomly assign account managers right now, but want you to create a machine learning model that will help predict which customers will churn (stop buying their service) so that they can correctly assign the customers most at risk to churn an account manager. Luckily they have some historical data, can you help them out? Create a classification algorithm that will help classify whether or not a customer churned. Then the company can test this against incoming data for future customers to predict which customers will churn and assign them an account manager.

    Content

    The data is saved as customer_churn.csv. Here are the fields and their definitions:

    Name : Name of the latest contact at Company

    Age: Customer Age

    Total_Purchase: Total Ads Purchased

    Account_Manager: Binary 0=No manager, 1= Account manager assigned

    Years: Totaly Years as a customer

    Num_sites: Number of websites that use the service.

    Onboard_date: Date that the name of the latest contact was onboarded

    Location: Client HQ Address

    Company: Name of Client Company

    Once you've created the model and evaluated it, test out the model on some new data (you can think of this almost like a hold-out set) that your client has provided, saved under new_customers.csv. The client wants to know which customers are most likely to churn given this data (they don't have the label yet).

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

    --- Original source retains full ownership of the source dataset ---

  18. Global Customer Churn Analysis Software Market Size By Component (Software,...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research (2025). Global Customer Churn Analysis Software Market Size By Component (Software, Services), By Deployment Mode (On-Premise, Cloud-Based), By Organization Size (Large Enterprises, Small And Medium Enterprises), By Application (Customer Retention, Customer Experience Management), By Industry Vertical (BFSI, Telecom), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/customer-churn-analysis-software-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Customer Churn Analysis Software Market size was valued at USD 1.9 Billion in 2024 and is projected to reach USD 8.4 Billion by 2032, growing at a CAGR of 19.80% during the forecast period 2026-2032.Global Customer Churn Analysis Software Market DriversThe market drivers for the Customer Churn Analysis Software Market can be influenced by various factors. These may include:Customer Retention Methods: As obtaining new consumers is becoming more expensive, greater emphasis is placed on retaining existing ones. Churn analysis software is used to forecast and reduce turnover, resulting in increased customer lifetime value.An Increase in the Usage of Predictive Analytics and AI Technologies: To examine big data sets, churn prediction technologies now incorporate artificial intelligence and machine learning. Their application is allowing for more accurate churn forecasting and targeted actions.

  19. D

    AI-Enhanced Subscription Churn Scoring Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). AI-Enhanced Subscription Churn Scoring Market Research Report 2033 [Dataset]. https://dataintelo.com/report/ai-enhanced-subscription-churn-scoring-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI-Enhanced Subscription Churn Scoring Market Outlook



    According to our latest research, the global AI-Enhanced Subscription Churn Scoring market size reached USD 1.72 billion in 2024, driven by the increasing adoption of data-driven customer retention strategies across industries. The market is expected to expand at a compound annual growth rate (CAGR) of 21.4% during the forecast period, reaching a value of USD 11.35 billion by 2033. This robust growth is primarily fueled by the proliferation of subscription-based business models and the urgent need for organizations to minimize customer attrition in highly competitive markets. As per our comprehensive analysis, advancements in artificial intelligence and machine learning algorithms have significantly elevated the accuracy and predictive power of churn scoring solutions, making them indispensable tools for enterprises seeking to optimize customer lifetime value and maximize recurring revenues.




    One of the key growth factors propelling the AI-Enhanced Subscription Churn Scoring market is the rapid digital transformation across sectors such as telecommunications, media and entertainment, e-commerce, and BFSI. As businesses increasingly shift towards subscription-based models, the ability to predict and mitigate customer churn has become a strategic imperative. AI-driven churn scoring solutions leverage vast datasets, including behavioral, transactional, and demographic information, to deliver actionable insights that enable organizations to proactively engage at-risk subscribers. This not only enhances customer retention rates but also drives operational efficiency by allowing targeted interventions, ultimately reducing the cost of customer acquisition and improving overall profitability.




    Another significant driver for market expansion is the growing sophistication of artificial intelligence and machine learning technologies. Modern AI-enhanced churn scoring platforms utilize deep learning, natural language processing, and advanced analytics to identify subtle patterns and early warning signals of potential churn. These solutions continuously learn and adapt to evolving customer behaviors, providing organizations with dynamic and highly accurate churn predictions. Furthermore, the integration of AI-enhanced churn scoring with customer relationship management (CRM) systems and marketing automation platforms has streamlined the process of executing personalized retention campaigns, further amplifying the value proposition for enterprises across diverse industries.




    The increasing emphasis on customer-centricity and personalized experiences is also accelerating the adoption of AI-Enhanced Subscription Churn Scoring solutions. As consumer expectations continue to rise, organizations are under pressure to deliver seamless, relevant, and timely interactions across all touchpoints. Churn scoring models powered by AI enable businesses to segment their subscriber base with unprecedented granularity, facilitating the design of differentiated retention strategies for distinct customer cohorts. This capability is particularly crucial in sectors such as SaaS and e-commerce, where customer loyalty and recurring revenue streams are directly tied to long-term business sustainability. The combination of predictive accuracy, scalability, and actionable insights positions AI-enhanced churn scoring as a cornerstone of modern customer retention strategies.




    From a regional perspective, North America currently dominates the AI-Enhanced Subscription Churn Scoring market, accounting for the largest share in 2024. This leadership is attributed to the region’s advanced technological infrastructure, high concentration of subscription-based enterprises, and early adoption of AI-driven analytics solutions. However, Asia Pacific is poised to witness the fastest growth over the forecast period, with a projected CAGR of 24.1%, fueled by the rapid expansion of digital services, increasing internet penetration, and the emergence of innovative startups. Europe and Latin America are also expected to contribute significantly to market growth, as organizations in these regions prioritize customer retention and digital transformation initiatives.



    Component Analysis



    The AI-Enhanced Subscription Churn Scoring market by component is primarily segmented into software and services. The software segment encompasses advanced churn prediction platforms, machine learning models, and analytics dashboards t

  20. m

    Customer Churn Software Market Global Size, Share & Industry Forecast 2033

    • marketresearchintellect.com
    Updated Jun 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Intellect (2024). Customer Churn Software Market Global Size, Share & Industry Forecast 2033 [Dataset]. https://www.marketresearchintellect.com/product/customer-churn-software-market/
    Explore at:
    Dataset updated
    Jun 25, 2024
    Dataset authored and provided by
    Market Research Intellect
    License

    https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy

    Area covered
    Global
    Description

    Gain in-depth insights into Customer Churn Software Market Report from Market Research Intellect, valued at USD 1.5 billion in 2024, and projected to grow to USD 4.2 billion by 2033 with a CAGR of 15.5% from 2026 to 2033.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
scikit-learn, churn-prediction [Dataset]. https://huggingface.co/datasets/scikit-learn/churn-prediction

churn-prediction

scikit-learn/churn-prediction

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset authored and provided by
scikit-learn
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Customer churn prediction dataset of a fictional telecommunication company made by IBM Sample Datasets. Context Predict behavior to retain customers. You can analyze all relevant customer data and develop focused customer retention programs. Content Each row represents a customer, each column contains customer’s attributes described on the column metadata. The data set includes information about:

Customers who left within the last month: the column is called Churn Services that each customer… See the full description on the dataset page: https://huggingface.co/datasets/scikit-learn/churn-prediction.

Search
Clear search
Close search
Google apps
Main menu