Facebook
TwitterThis dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.
Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.
Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.
Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.
Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.
The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.
It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.
This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterHouse Price Prediction based on city zipcode...
A home is often the largest and most expensive purchase a person makes in his or her lifetime. Ensuring homeowners have a trusted way to monitor this asset is incredibly important. The Zestimate was created to give consumers as much information as possible about homes and the housing market, marking the first time consumers had access to this type of home value information at no cost.
“Zestimates” are estimated home values based on 7.5 million statistical and machine learning models that analyze hundreds of data points on each property. And, by continually improving the median margin of error (from 14% at the onset to 5% today), Zillow has since become established as one of the largest, most trusted marketplaces for real estate information in the U.S. and a leading example of impactful machine learning.
Zillow Prize, a competition with a one million dollar grand prize, is challenging the data science community to help push the accuracy of the Zestimate even further. Winning algorithms stand to impact
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Facebook
Twitter(https://www.kaggle.com/c/house-prices-advanced-regression-techniques) About this Dataset Start here if... You have some experience with R or Python and machine learning basics. This is a perfect competition for data science students who have completed an online course in machine learning and are looking to expand their skill set before trying a featured competition.
Competition Description
Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.
With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.
Practice Skills Creative feature engineering Advanced regression techniques like random forest and gradient boosting Acknowledgments The Ames Housing dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset.
There's a story behind every dataset and here's your opportunity to share yours.
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
Twitterhttps://www.reddit.com/wiki/apihttps://www.reddit.com/wiki/api
Start here if... You have some experience with R or Python and machine learning basics. This is a perfect competition for data science students who have completed an online course in machine learning and are looking to expand their skill set before trying a featured competition.
Competition Description
Ask a home buyer to describe their dream house, and they probably won't begin with the height of the basement ceiling or the proximity to an east-west railroad. But this playground competition's dataset proves that much more influences price negotiations than the number of bedrooms or a white-picket fence.
With 79 explanatory variables describing (almost) every aspect of residential homes in Ames, Iowa, this competition challenges you to predict the final price of each home.
Practice Skills Creative feature engineering Advanced regression techniques like random forest and gradient boosting Acknowledgments The Ames Housing dataset was compiled by Dean De Cock for use in data science education. It's an incredible alternative for data scientists looking for a modernized and expanded version of the often cited Boston Housing dataset.
There's a story behind every dataset and here's your opportunity to share yours.
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset supports the research article “Predicting Residential Property Values Using XGBoost and Spatial–Temporal Encoding: Evidence from Southern California” by Michael Quintana (2025).The dataset contains a cleaned and anonymized subset of residential property transactions derived from Redfin’s publicly available data export (June 2025).Each observation represents a single-family home, condominium, or townhouse sold in Southern California.Variables include sale price, living area, lot size, year built, bedrooms, bathrooms, ZIP code, and days on market.The dataset was used to train and validate an XGBoost regression model designed to estimate home prices using both structural and spatial–temporal features.All personally identifiable or proprietary location data have been removed or aggregated at the ZIP-code level to maintain privacy while preserving statistical utility.This dataset and accompanying R scripts allow replication of the core results presented in the study, including model training, feature importance analysis, and predictive performance evaluation.
Facebook
TwitterThis is the dataset used in this book: https://github.com/ageron/handson-ml/tree/master/datasets/housing to illustrate a sample end-to-end ML project workflow (pipeline). This is a great book - I highly recommend!
The data is based on California Census in 1990.
"This dataset is a modified version of the California Housing dataset available from Luís Torgo's page (University of Porto). Luís Torgo obtained it from the StatLib repository (which is closed now). The dataset may also be downloaded from StatLib mirrors.
The following is the description from the book author:
This dataset appeared in a 1997 paper titled Sparse Spatial Autoregressions by Pace, R. Kelley and Ronald Barry, published in the Statistics and Probability Letters journal. They built it using the 1990 California census data. It contains one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).
The dataset in this directory is almost identical to the original, with two differences: 207 values were randomly removed from the total_bedrooms column, so we can discuss what to do with missing data. An additional categorical attribute called ocean_proximity was added, indicating (very roughly) whether each block group is near the ocean, near the Bay area, inland or on an island. This allows discussing what to do with categorical data. Note that the block groups are called "districts" in the Jupyter notebooks, simply because in some contexts the name "block group" was confusing."
http://www.dcc.fc.up.pt/%7Eltorgo/Regression/cal_housing.html
This is a dataset obtained from the StatLib repository. Here is the included description:
"We collected information on the variables using all the block groups in California from the 1990 Cens us. In this sample a block group on average includes 1425.5 individuals living in a geographically co mpact area. Naturally, the geographical area included varies inversely with the population density. W e computed distances among the centroids of each block group as measured in latitude and longitude. W e excluded all the block groups reporting zero entries for the independent and dependent variables. T he final data contained 20,640 observations on 9 variables. The dependent variable is ln(median house value)."
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThis dataset is designed for beginners to practice regression problems, particularly in the context of predicting house prices. It contains 1000 rows, with each row representing a house and various attributes that influence its price. The dataset is well-suited for learning basic to intermediate-level regression modeling techniques.
Beginner Regression Projects: This dataset can be used to practice building regression models such as Linear Regression, Decision Trees, or Random Forests. The target variable (house price) is continuous, making this an ideal problem for supervised learning techniques.
Feature Engineering Practice: Learners can create new features by combining existing ones, such as the price per square foot or age of the house, providing an opportunity to experiment with feature transformations.
Exploratory Data Analysis (EDA): You can explore how different features (e.g., square footage, number of bedrooms) correlate with the target variable, making it a great dataset for learning about data visualization and summary statistics.
Model Evaluation: The dataset allows for various model evaluation techniques such as cross-validation, R-squared, and Mean Absolute Error (MAE). These metrics can be used to compare the effectiveness of different models.
The dataset is highly versatile for a range of machine learning tasks. You can apply simple linear models to predict house prices based on one or two features, or use more complex models like Random Forest or Gradient Boosting Machines to understand interactions between variables.
It can also be used for dimensionality reduction techniques like PCA or to practice handling categorical variables (e.g., neighborhood quality) through encoding techniques like one-hot encoding.
This dataset is ideal for anyone wanting to gain practical experience in building regression models while working with real-world features.