Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Preventive healthcare is a crucial pillar of health as it contributes to staying healthy and having immediate treatment when needed. Mining knowledge from longitudinal studies has the potential to significantly contribute to the improvement of preventive healthcare. Unfortunately, data originated from such studies are characterized by high complexity, huge volume, and a plethora of missing values. Machine Learning, Data Mining and Data Imputation models are utilized a part of solving these challenges, respectively. Toward this direction, we focus on the development of a complete methodology for the ATHLOS Project – funded by the European Union’s Horizon 2020 Research and Innovation Program, which aims to achieve a better interpretation of the impact of aging on health. The inherent complexity of the provided dataset lies in the fact that the project includes 15 independent European and international longitudinal studies of aging. In this work, we mainly focus on the HealthStatus (HS) score, an index that estimates the human status of health, aiming to examine the effect of various data imputation models to the prediction power of classification and regression models. Our results are promising, indicating the critical importance of data imputation in enhancing preventive medicine’s crucial role.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The present study aimed at comparing predictive performance of some data mining algorithms (CART, CHAID, Exhaustive CHAID, MARS, MLP, and RBF) in biometrical data of Mengali rams. To compare the predictive capability of the algorithms, the biometrical data regarding body (body length, withers height, and heart girth) and testicular (testicular length, scrotal length, and scrotal circumference) measurements of Mengali rams in predicting live body weight were evaluated by most goodness of fit criteria. In addition, age was considered as a continuous independent variable. In this context, MARS data mining algorithm was used for the first time to predict body weight in two forms, without (MARS_1) and with interaction (MARS_2) terms. The superiority order in the predictive accuracy of the algorithms was found as CART > CHAID ≈ Exhaustive CHAID > MARS_2 > MARS_1 > RBF > MLP. Moreover, all tested algorithms provided a strong predictive accuracy for estimating body weight. However, MARS is the only algorithm that generated a prediction equation for body weight. Therefore, it is hoped that the available results might present a valuable contribution in terms of predicting body weight and describing the relationship between the body weight and body and testicular measurements in revealing breed standards and the conservation of indigenous gene sources for Mengali sheep breeding. Therefore, it will be possible to perform more profitable and productive sheep production. Use of data mining algorithms is useful for revealing the relationship between body weight and testicular traits in describing breed standards of Mengali sheep.
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Overview of data mining and predictive analytics of Data Mining, 6th Semester , B.Tech in Computer Science & Engineering (Artificial Intelligence and Machine Learning)
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Supervised learning for prediction of Data Mining, 6th Semester , B.Tech in Computer Science & Engineering (Artificial Intelligence and Machine Learning)
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Explore the dynamic Data Mining Software market forecast (2025-2033) with a 12.5% CAGR. Uncover key drivers, restraints, and trends shaping analytics for large enterprises and SMEs.
Facebook
Twitterhttps://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy
Global Predictive Analytics Market size worth at USD 16.19 Billion in 2023 and projected to USD 113.8 Billion by 2032, with a CAGR of around 24.19% between 2024-2032.
Facebook
Twitter
According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.
One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.
Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.
The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.
From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.
The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro
Facebook
TwitterObjectiveOver the past decades, many studies have used data mining technology to predict the 5-year survival rate of colorectal cancer, but there have been few reports that compared multiple data mining algorithms to the TNM classification of malignant tumors (TNM) staging system using a dataset in which the training and testing data were from different sources. Here we compared nine data mining algorithms to the TNM staging system for colorectal survival analysis. MethodsTwo different datasets were used: 1) the National Cancer Institute's Surveillance, Epidemiology, and End Results dataset; and 2) the dataset from a single Chinese institution. An optimization and prediction system based on nine data mining algorithms as well as two variable selection methods was implemented. The TNM staging system was based on the 7th edition of the American Joint Committee on Cancer TNM staging system. ResultsWhen the training and testing data were from the same sources, all algorithms had slight advantages over the TNM staging system in predictive accuracy. When the data were from different sources, only four algorithms (logistic regression, general regression neural network, Bayesian networks, and Naïve Bayes) had slight advantages over the TNM staging system. Also, there was no significant differences among all the algorithms (p>0.05). ConclusionsThe TNM staging system is simple and practical at present, and data mining methods are not accurate enough to replace the TNM staging system for colorectal cancer survival prediction. Furthermore, there were no significant differences in the predictive accuracy of all the algorithms when the data were from different sources. Building a larger dataset that includes more variables may be important for furthering predictive accuracy.
Facebook
Twitterhttps://www.meticulousresearch.com/privacy-policyhttps://www.meticulousresearch.com/privacy-policy
Data Mining Tools Market Size, Share, Forecast & Trends Size - By Component, Deployment (Cloud, On-Premise), By Organization Size (Large Enterprises, Small & Medium Enterprises), By End-user Vertical (BFSI, Healthcare, Retail, IT & Telecom) - Global Forecast to 2035
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Classification and Prediction of Data Warehousing and Data Mining, 6th Semester , Computer Science and Engineering
Facebook
TwitterThe visit of an online shop by a possible customer is also called a session. During a session the visitor clicks on products in order to see the corresponding detail page. Furthermore, he possibly will add or remove products to/from his shopping basket. At the end of a session it is possible that one or several products from the shopping basket will be ordered. The activities of the user are also called transactions. The goal of the analysis is to predict whether the visitor will place an order or not on the basis of the transaction data collected during the session.
In the first task historical shop data are given consisting of the session activities inclusive of the associated information whether an order was placed or not. These data can be used in order to subsequently make order forecasts for other session activities in the same shop. Of course, the real outcome of the sessions for this set is not known. Thus, the first task can be understood as a classical data mining problem.
The second task deals with the online scenario. In this context the participants are to implement an agent learning on the basis of transactions. That means that the agent successively receives the individual transactions and has to make a forecast for each of them with respect to the outcome of the shopping cart transaction. This task maps the practice scenario in the best possible way in the case that a transaction-based forecast is required and a corresponding algorithm should learn in an adaptive manner.
For the individual tasks anonymised real shop data are provided in the form of structured text files consisting of individual data sets. The data sets represent in each case transactions in the shop and may contain redundant information. For the data, in particular the following applies:
In concrete terms, only the array names of the attached document “*features.pdf*” in their respective sequence will be used as column headings. The corresponding value ranges are listed there, too.
The training file for task 1 is “*transact_train.txt*“) contains all data arrays of the document, whereas the corresponding classification file (“*transact_class.txt*”) of course does not contain the target attribute “*order*”.
In task 2 data in the form of a string array are transferred to the implementations of the participants by means of a method. The individual fields of the array contain the same data arrays that are listed in “*features.pdf*”–also without the target attribute “*order*”–and exactly in the sequence used there.
This dataset is publicly available in the data-mining-cup-website.
Facebook
TwitterEnsemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.
Facebook
TwitterDistributed data mining from privacy-sensitive multi-party data is likely to play an important role in the next generation of integrated vehicle health monitoring systems. For example, consider an airline manufacturer [tex]$\mathcal{C}$[/tex] manufacturing an aircraft model [tex]$A$[/tex] and selling it to five different airline operating companies [tex]$\mathcal{V}_1 \dots \mathcal{V}_5$[/tex]. These aircrafts, during their operation, generate huge amount of data. Mining this data can reveal useful information regarding the health and operability of the aircraft which can be useful for disaster management and prediction of efficient operating regimes. Now if the manufacturer [tex]$\mathcal{C}$[/tex] wants to analyze the performance data collected from different aircrafts of model-type [tex]$A$[/tex] belonging to different airlines then central collection of data for subsequent analysis may not be an option. It should be noted that the result of this analysis may be statistically more significant if the data for aircraft model [tex]$A$[/tex] across all companies were available to [tex]$\mathcal{C}$[/tex]. The potential problems arising out of such a data mining scenario are:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Churn prediction aims to detect customers intended to leave a service provider. Retaining one customer costs an organization from 5 to 10 times than gaining a new one. Predictive models can provide correct identification of possible churners in the near future in order to provide a retention solution. This paper presents a new prediction model based on Data Mining (DM) techniques. The proposed model is composed of six steps which are; identify problem domain, data selection, investigate data set, classification, clustering and knowledge usage. A data set with 23 attributes and 5000 instances is used. 4000 instances used for training the model and 1000 instances used as a testing set. The predicted churners are clustered into 3 categories in case of using in a retention strategy. The data mining techniques used in this paper are Decision Tree, Support Vector Machine and Neural Network throughout an open source software name WEKA.
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Classification and Prediction of Data Warehousing and Data Mining, 3rd Semester , Master of Computer Applications (2 Years)
Facebook
Twitterhttps://bisresearch.com/privacy-policy-cookie-restriction-modehttps://bisresearch.com/privacy-policy-cookie-restriction-mode
The Data Mining Tools Market is expected to be valued at $1.24 billion in 2024, with an anticipated expansion at a CAGR of 11.63% to reach $3.73 billion by 2034.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Iraqi dataset is collected through applying (or submitting) questionnaire in three Iraqi secondary schools for both applicable and biology branches of the final stage during the second semester of the 2018 year. Initially, the questionnaire contains 56 questions in three A4 sheets and it is answered by 250 students (samples). Latter, 130 samples are discarded due to lack of information since pre-processing is applied to obtain the most complete information of students. After removing inconsistencies and incompleteness in the dataset, this study considers 120 samples instances with 55 features for experiment purposes. The features are distributed into five main categories: Demographic, Economic, Educational, Time, and Marks. Table (1) shows the dataset’s attributes/features and their description. As illustrated in this table, new features are introduced, such as holiday and worrying effects. The relationships between parents with schools and use of books and references by the student are also considered.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 7.87(USD Billion) |
| MARKET SIZE 2025 | 8.37(USD Billion) |
| MARKET SIZE 2035 | 15.4(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Model, Technique, End Use, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Growing demand for actionable insights, Increasing adoption of AI technologies, Rising need for predictive analytics, Expanding data sources and volume, Regulatory compliance and data privacy concerns |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | Informatica, Tableau, Cloudera, Microsoft, Google, Alteryx, Oracle, SAP, SAS, DataRobot, Dell Technologies, Qlik, Teradata, TIBCO Software, Snowflake, IBM |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for predictive analytics, Growth in big data technologies, Rising need for data-driven decision-making, Adoption of AI and machine learning, Expansion in healthcare data analysis |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 6.3% (2025 - 2035) |
Facebook
TwitterThis data set used in the CoIL 2000 Challenge contains information on customers of an insurance company. The data consists of 86 variables and includes product usage data and socio-demographic data
DETAILED DATA DESCRIPTION
THE INSURANCE COMPANY (TIC) 2000
(c) Sentient Machine Research 2000
DISCLAIMER
This dataset is owned and supplied by the Dutch data mining company Sentient Machine Research, and is based on real-world business data. You are allowed to use this dataset and accompanying information for non-commercial research and education purposes only. It is explicitly not allowed to use this dataset for commercial education or demonstration purposes. For any other use, please contact Peter van der Putten, info@smr.nl.
This dataset has been used in the CoIL Challenge 2000 data mining competition. For papers describing results on this dataset, see the TIC 2000 homepage: http://www.wi.leidenuniv.nl/~putten/library/cc2000/
REFERENCE P. van der Putten and M. van Someren (eds). CoIL Challenge 2000: The Insurance Company Case. Published by Sentient Machine Research, Amsterdam. Also a Leiden Institute of Advanced Computer Science Technical Report 2000-09. June 22, 2000. See http://www.liacs.nl/~putten/library/cc2000/
RELEVANT FILES
tic_2000_train_data.csv: Dataset to train and validate prediction models and build a description (5822 customer records). Each record consists of 86 attributes, containing sociodemographic data (attribute 1-43) and product ownership (attributes 44-86). The sociodemographic data is derived from zip codes. All customers living in areas with the same zip code have the same sociodemographic attributes. Attribute 86, "CARAVAN: Number of mobile home policies", is the target variable.
tic_2000_eval_data.csv: Dataset for predictions (4000 customer records). It has the same format as TICDATA2000.txt, only the target is missing. Participants are supposed to return the list of predicted targets only. All datasets are in CSV format. The meaning of the attributes and attribute values is given dictionary.csv
tic_2000_target_data.csv Targets for the evaluation set.
dictionary.txt: Data description with numerical labeled categories descriptions. It has columnar description data and the labels of the dummy/Labeled encoding.
Original Task description Link: http://liacs.leidenuniv.nl/~puttenpwhvander/library/cc2000/problem.html UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+%28COIL+2000%29
Facebook
Twitter"The 'KGHM Dataset' is a meticulously curated collection of financial and economic data specifically designed for the purpose of stock price prediction for KGHM, a leading copper mining company. This dataset encompasses a wide range of features including historical prices, macroeconomic indicators, industry-related metrics, company-specific financials, and technical indicators. The dataset comprises 59 carefully selected features that have the potential to influence the stock price of KGHM. The data has been sourced from reputable platforms such as Yahoo Finance, Wikipedia, and the official website of KGHM. The dataset has undergone rigorous pre-processing and feature engineering to ensure data quality and relevance for the machine learning models used in the stock price prediction analysis. It serves as a valuable resource for conducting in-depth analysis and developing accurate predictive models for KGHM's stock price movements."
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Preventive healthcare is a crucial pillar of health as it contributes to staying healthy and having immediate treatment when needed. Mining knowledge from longitudinal studies has the potential to significantly contribute to the improvement of preventive healthcare. Unfortunately, data originated from such studies are characterized by high complexity, huge volume, and a plethora of missing values. Machine Learning, Data Mining and Data Imputation models are utilized a part of solving these challenges, respectively. Toward this direction, we focus on the development of a complete methodology for the ATHLOS Project – funded by the European Union’s Horizon 2020 Research and Innovation Program, which aims to achieve a better interpretation of the impact of aging on health. The inherent complexity of the provided dataset lies in the fact that the project includes 15 independent European and international longitudinal studies of aging. In this work, we mainly focus on the HealthStatus (HS) score, an index that estimates the human status of health, aiming to examine the effect of various data imputation models to the prediction power of classification and regression models. Our results are promising, indicating the critical importance of data imputation in enhancing preventive medicine’s crucial role.