100+ datasets found
  1. House Price Prediction Dataset & Code

    • kaggle.com
    Updated Sep 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tushar Paul (2023). House Price Prediction Dataset & Code [Dataset]. http://doi.org/10.34740/kaggle/ds/3757184
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tushar Paul
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    House price prediction dataset

    This dataset comprises housing data for various metropolitan cities of India. It includes: - Collection of prices of new and resale houses - The amenities provided for each house

    This housing dataset is useful for a range of stakeholders, including real estate agents, property developers, buyers, renters, and researchers interested in analyzing housing markets and trends in metropolitan cities across India. It can be used for market analysis, price prediction, property recommendations, and various other real estate-related tasks.

    Shape of dataset : (6207, 40)

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F11965067%2F75861c40e86a4d2d10c044be79542436%2FCapture.JPG?generation=1704918894425981&alt=media" alt="">

    Github Link : https://github.com/TusharPaul01/House-Price-Prediction

    For more such dataset & code check : https://www.kaggle.com/tusharpaul2001

  2. Real Estate Price Prediction Data

    • figshare.com
    txt
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah (2024). Real Estate Price Prediction Data [Dataset]. http://doi.org/10.6084/m9.figshare.26517325.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 8, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Shbool; Rand Al-Dmour; Bashar Al-Shboul; Nibal Albashabsheh; Najat Almasarwah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset was collected and curated to support research on predicting real estate prices using machine learning algorithms, specifically Support Vector Regression (SVR) and Gradient Boosting Machine (GBM). The dataset includes comprehensive information on residential properties, enabling the development and evaluation of predictive models for accurate and transparent real estate appraisals.Data Source: The data was sourced from Department of Lands and Survey real estate listings.Features: The dataset contains the following key attributes for each property:Area (in square meters): The total living area of the property.Floor Number: The floor on which the property is located.Location: Geographic coordinates or city/region where the property is situated.Type of Apartment: The classification of the property, such as studio, one-bedroom, two-bedroom, etc.Number of Bathrooms: The total number of bathrooms in the property.Number of Bedrooms: The total number of bedrooms in the property.Property Age (in years): The number of years since the property was constructed.Property Condition: A categorical variable indicating the condition of the property (e.g., new, good, fair, needs renovation).Proximity to Amenities: The distance to nearby amenities such as schools, hospitals, shopping centers, and public transportation.Market Price (target variable): The actual sale price or listed price of the property.Data Preprocessing:Normalization: Numeric features such as area and proximity to amenities were normalized to ensure consistency and improve model performance.Categorical Encoding: Categorical features like property condition and type of apartment were encoded using one-hot encoding or label encoding, depending on the specific model requirements.Missing Values: Missing data points were handled using appropriate imputation techniques or by excluding records with significant missing information.Usage: This dataset was utilized to train and test machine learning models, aiming to predict the market price of residential properties based on the provided attributes. The models developed using this dataset demonstrated improved accuracy and transparency over traditional appraisal methods.Dataset Availability: The dataset is available for public use under the [CC BY 4.0]. Users are encouraged to cite the related publication when using the data in their research or applications.Citation: If you use this dataset in your research, please cite the following publication:[Real Estate Decision-Making: Precision in Price Prediction through Advanced Machine Learning Algorithms].

  3. Forecast house price growth in the UK 2024-2028

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast house price growth in the UK 2024-2028 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 2023
    Area covered
    United Kingdom
    Description

    Just as in many other countries, the housing market in the UK grew substantially during the coronavirus pandemic, fueled by robust demand and low borrowing costs. Nevertheless, high inflation and the increase in mortgage rates has led to house price growth slowing down. According to the forecast, 2024 is expected to see house prices decrease by ***** percent. Between 2024 and 2028, the average house price growth is projected at *** percent. A contraction after a period of continuous growth In June 2022, the UK's house price index exceeded *** index points, meaning that since 2015 which was the base year for the index, house prices had increased by ** percent. In just two years, between 2020 and 2022, the index surged by ** index points. As the market stood in December 2023, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next years. Growth is forecast to be stronger in 2024 and slow down in the period between 2025 and 2028. The rental market in London is expected to follow a similar trend, with Central London slightly outperforming Greater London.

  4. T

    United States Nahb Housing Market Index

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Nahb Housing Market Index [Dataset]. https://tradingeconomics.com/united-states/nahb-housing-market-index
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1985 - Jun 30, 2025
    Area covered
    United States
    Description

    Nahb Housing Market Index in the United States decreased to 32 points in June from 34 points in May of 2025. This dataset provides the latest reported value for - United States Nahb Housing Market Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  5. c

    Redfin usa properties dataset

    • crawlfeeds.com
    csv, zip
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Redfin usa properties dataset [Dataset]. https://crawlfeeds.com/datasets/redfin-usa-properties-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Area covered
    United States
    Description

    Explore the Redfin USA Properties Dataset, available in CSV format. This extensive dataset provides valuable insights into the U.S. real estate market, including detailed property listings, prices, property types, and more across various states and cities. Perfect for those looking to conduct in-depth market analysis, real estate investment research, or financial forecasting.

    Key Features:

    • Comprehensive Property Data: Includes essential details such as listing prices, property types, square footage, and the number of bedrooms and bathrooms.
    • Geographic Coverage: Encompasses a wide range of U.S. states and cities, providing a broad view of the national real estate market.
    • Historical Trends: Analyze past market data to understand price movements, regional differences, and market trends over time.
    • Geo-Location Details: Enables spatial analysis and mapping by including precise geographical coordinates of properties.

    Who Can Benefit From This Dataset:

    • Real Estate Investors: Identify lucrative opportunities by analyzing property values, market trends, and regional price variations.
    • Market Analysts: Gain a deeper understanding of the U.S. housing market dynamics to inform research and reporting.
    • Data Scientists and Researchers: Leverage detailed real estate data for modeling, urban studies, or economic analysis.
    • Financial Analysts: Utilize the dataset for financial modeling, helping to predict market behavior and assess investment risks.

    Download the Redfin USA Properties Dataset to access essential information on the U.S. housing market, ideal for professionals in real estate, finance, and data analytics. Unlock key insights to make informed decisions in a dynamic market environment.

    Looking for deeper insights or a custom data pull from Redfin?
    Send a request with just one click and explore detailed property listings, price trends, and housing data.
    ๐Ÿ”— Request Redfin Real Estate Data

  6. Housing Prices Prediction

    • kaggle.com
    Updated Jun 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kat Hernandez (2020). Housing Prices Prediction [Dataset]. https://www.kaggle.com/datasets/katmaryher/housing-prices-prediction/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 24, 2020
    Dataset provided by
    Kaggle
    Authors
    Kat Hernandez
    Description

    Dataset

    This dataset was created by Kat Hernandez

    Contents

  7. h

    Real-Estate-Price-Prediction

    • huggingface.co
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globose Technology Solutions (2025). Real-Estate-Price-Prediction [Dataset]. https://huggingface.co/datasets/globosetechnology12/Real-Estate-Price-Prediction
    Explore at:
    Dataset updated
    Mar 7, 2025
    Authors
    Globose Technology Solutions
    Description

    Problem Statement ๐Ÿ‘‰ Download the case studies here Investors and buyers in the real estate market faced challenges in accurately assessing property values and market trends. Traditional valuation methods were time-consuming and lacked precision, making it difficult to make informed investment decisions. A real estate firm sought a predictive analytics solution to provide accurate property price forecasts and market insights. Challenge Developing a real estate price prediction system involvedโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/globosetechnology12/Real-Estate-Price-Prediction.

  8. Median sale price of existing homes sold in the U.S. 2017-2024 with forecast...

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median sale price of existing homes sold in the U.S. 2017-2024 with forecast for 2026 [Dataset]. https://www.statista.com/statistics/272776/median-price-of-existing-homes-in-the-united-states-from-2011/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. housing market continues to evolve, with the median home price forecast to reach ******* U.S. dollars by the second quarter of 2026. This projection comes after a period of significant growth and recent fluctuations, reflecting the complex interplay of economic factors affecting the real estate sector. The rising costs have not only impacted home prices, but also down payments, with the median down payment more than doubling since 2012. Regional variations in housing costs Home prices and down payments vary dramatically across the United States. While the national median down payment stood at approximately ****** U.S. dollars in early 2024, homebuyers in states like California, Massachusetts, and Hawaii faced down payments exceeding ****** U.S. dollars. This disparity highlights the challenges of homeownership in high-cost markets and underscores the importance of location in determining housing affordability. Market dynamics and future outlook The housing market has shown signs of cooling after years of rapid growth, with more modest price increases of *** percent in 2022 and *** percent in 2023. This slowdown can be attributed in part to rising mortgage rates, which have tempered demand. Despite these challenges, most states continued to see year-over-year price growth in the fourth quarter of 2023, with Rhode Island and Vermont leading the pack at over ** percent appreciation. As the market adjusts to new economic realities, potential homebuyers and investors alike will be watching closely for signs of stabilization or renewed growth in the coming years.

  9. Interest Rates, High Prices, and Inventory Shortage to Slow Down Housing...

    • kappasignal.com
    Updated May 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Interest Rates, High Prices, and Inventory Shortage to Slow Down Housing Market (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/interest-rates-high-prices-and.html
    Explore at:
    Dataset updated
    May 27, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Interest Rates, High Prices, and Inventory Shortage to Slow Down Housing Market

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Understanding the Dynamics and Implications of a Housing Market Recession...

    • kappasignal.com
    Updated May 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Understanding the Dynamics and Implications of a Housing Market Recession (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/understanding-dynamics-and-implications.html
    Explore at:
    Dataset updated
    May 25, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Understanding the Dynamics and Implications of a Housing Market Recession

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. c

    Investor attention & house prices - Australian housing market

    • acquire.cqu.edu.au
    • researchdata.edu.au
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thi Tuyet Anh Nguyen (2025). Investor attention & house prices - Australian housing market [Dataset]. http://doi.org/10.25946/28395452.v1
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    CQUniversity
    Authors
    Thi Tuyet Anh Nguyen
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    This project comprises two studies that examine the relationship between investor attention and house prices in the Australian housing market. The first study investigates the correlation between investor attention, measured by the Google Search Volume Index, and house prices in Australia. It uncovers a strong positive correlation, indicating that fluctuations in investor attention closely align with changes in house prices. The study also highlights the predictive potential of investor attention in forecasting housing market trends, supported by behavioural finance principles that emphasise the impact of investor sentiment on asset pricing, particularly in real estate. The second study explores the bidirectional relationship between house prices and investor attention using OLS regression, VAR modeling, Granger causality tests, impulse response functions, and forecast error variance decomposition. The findings confirm that investor attention significantly influences housing prices, and past house prices can also impact current investor attention. In addition, short-term shocks in house prices cause fluctuations in investor attention, although these effects are transient. This study underscores the importance of integrating investor attention with traditional economic factors to better understand and predict housing market dynamics. These empirical studies contribute significantly to the literature on investor attention and housing market dynamics, representing some of the earliest empirical inquiries into the relation between housing market fluctuations and investor attention. By bridging these two critical domains, the research provides valuable insights for policymakers, real estate investors, and market analysts. The findings also lay a foundation for scholars and practitioners to enhance housing market analysis and prediction, offering substantial implications for market forecasting and intervention strategies.

  12. Prime property prices growth forecast in the regional market in the UK...

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prime property prices growth forecast in the regional market in the UK 2024-2028 [Dataset]. https://www.statista.com/statistics/323606/uk-wide-property-price-growth/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2024
    Area covered
    United Kingdom
    Description

    According to the forecast, the UK regional prime property real estate market is to increase by almost ** percent by 2028. In 2024, prime property prices are expected to fall by two percent. In the following four years, growth will recover.

  13. T

    China Newly Built House Prices YoY Change

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Newly Built House Prices YoY Change [Dataset]. https://tradingeconomics.com/china/housing-index
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2011 - May 31, 2025
    Area covered
    China
    Description

    Housing Index in China decreased by 3.50 percent in May from -4 percent in April of 2025. This dataset provides the latest reported value for - China Newly Built House Prices YoY Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  14. H

    Comprehensive dataset and Python toolkit for housing market analysis in...

    • dataverse.harvard.edu
    Updated Mar 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingston Li (2025). Comprehensive dataset and Python toolkit for housing market analysis in Mercer County, NJ [Dataset]. http://doi.org/10.7910/DVN/LYRDHG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 22, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Kingston Li
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Mercer County, New Jersey
    Description

    This project combines data extraction, predictive modeling, and geospatial mapping to analyze housing trends in Mercer County, New Jersey. It consists of three core components: Census Data Extraction: Gathers U.S. Census data (2012โ€“2022) on median house value, household income, and racial demographics for all census tracts in the county. It accounts for changes in census tract boundaries between 2010 and 2020 by approximating values for newly defined tracts. House Value Prediction: Uses an LSTM model with k-fold cross-validation to forecast median house values through 2025. Multiple feature combinations and sequence lengths are tested to optimize prediction accuracy, with the final model selected based on MSE and MAE scores. Data Mapping: Visualizes historical and predicted housing data using GeoJSON files from the TIGERWeb API. It generates interactive maps showing raw values, changes over time, and percent differences, with customization options to handle outliers and improve interpretability. This modular workflow can be adapted to other regions by changing the input FIPS codes and feature selections.

  15. Number of existing homes sold in the U.S. 1995-2024, with a forecast until...

    • statista.com
    • ai-chatbox.pro
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of existing homes sold in the U.S. 1995-2024, with a forecast until 2026 [Dataset]. https://www.statista.com/statistics/226144/us-existing-home-sales/
    Explore at:
    Dataset updated
    Apr 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The number of U.S. home sales in the United States declined in 2024, after soaring in 2021. A total of four million transactions of existing homes, including single-family, condo, and co-ops, were completed in 2024, down from 6.12 million in 2021. According to the forecast, the housing market is forecast to head for recovery in 2025, despite transaction volumes expected to remain below the long-term average. Why have home sales declined? The housing boom during the coronavirus pandemic has demonstrated that being a homeowner is still an integral part of the American dream. Nevertheless, sentiment declined in the second half of 2022 and Americans across all generations agreed that the time was not right to buy a home. A combination of factors has led to house prices rocketing and making homeownership unaffordable for the average buyer. A survey among owners and renters found that the high home prices and unfavorable economic conditions were the two main barriers to making a home purchase. People who would like to purchase their own home need to save up a deposit, have a good credit score, and a steady and sufficient income to be approved for a mortgage. In 2022, mortgage rates experienced the most aggressive increase in history, making the total cost of homeownership substantially higher. Are U.S. home prices expected to fall? The median sales price of existing homes stood at 413,000 U.S. dollars in 2024 and was forecast to increase slightly until 2026. The development of the S&P/Case Shiller U.S. National Home Price Index shows that home prices experienced seven consecutive months of decline between June 2022 and January 2023, but this trend reversed in the following months. Despite mild fluctuations throughout the year, home prices in many metros are forecast to continue to grow, albeit at a much slower rate.

  16. FMHPI house price index change 1990-2024

    • statista.com
    • ai-chatbox.pro
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FMHPI house price index change 1990-2024 [Dataset]. https://www.statista.com/statistics/275159/freddie-mac-house-price-index-from-2009/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. housing market has slowed, after ** consecutive years of rising home prices. In 2021, house prices surged by an unprecedented ** percent, marking the highest increase on record. However, the market has since cooled, with the Freddie Mac House Price Index showing more modest growth between 2022 and 2024. In 2024, home prices increased by *** percent. That was lower than the long-term average of *** percent since 1990. Impact of mortgage rates on homebuying The recent cooling in the housing market can be partly attributed to rising mortgage rates. After reaching a record low of **** percent in 2021, the average annual rate on a 30-year fixed-rate mortgage more than doubled in 2023. This significant increase has made homeownership less affordable for many potential buyers, contributing to a substantial decline in home sales. Despite these challenges, forecasts suggest a potential recovery in the coming years. How much does it cost to buy a house in the U.S.? In 2023, the median sales price of an existing single-family home reached a record high of over ******* U.S. dollars. Newly built homes were even pricier, despite a slight decline in the median sales price in 2023. Naturally, home prices continue to vary significantly across the country, with West Virginia being the most affordable state for homebuyers.

  17. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - Apr 30, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 434.90 points in April from 436.70 points in March of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  18. Real Estate Market Size and Share | Statistics โ€“ 2030

    • nextmsc.com
    csv, pdf
    Updated Jul 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Supradip Baul (2025). Real Estate Market Size and Share | Statistics โ€“ 2030 [Dataset]. https://www.nextmsc.com/report/real-estate-market
    Explore at:
    pdf, csvAvailable download formats
    Dataset updated
    Jul 2025
    Dataset provided by
    Next Move Strategy Consulting
    Authors
    Supradip Baul
    License

    https://www.nextmsc.com/privacy-policyhttps://www.nextmsc.com/privacy-policy

    Time period covered
    2023 - 2030
    Area covered
    Global
    Description

    Real Estate Market was valued at USD 9.8 trillion in 2023, and is slated to reach USD 14.54 trillion by 2030, due to the growing urbanization worldwide.

  19. T

    Spain House Prices

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Spain House Prices [Dataset]. https://tradingeconomics.com/spain/housing-index
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1987 - Mar 31, 2025
    Area covered
    Spain
    Description

    Housing Index in Spain increased to 2033 EUR/SQ. METRE in the first quarter of 2025 from 1972.10 EUR/SQ. METRE in the fourth quarter of 2024. This dataset provides the latest reported value for - Spain House Prices - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  20. Crisis 2008-2009 Housing Data

    • kaggle.com
    zip
    Updated Aug 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ievgen Iosifov (2019). Crisis 2008-2009 Housing Data [Dataset]. https://www.kaggle.com/datasets/eiosifov/crisis-20082009-housing-data
    Explore at:
    zip(1727 bytes)Available download formats
    Dataset updated
    Aug 31, 2019
    Authors
    Ievgen Iosifov
    Description

    Context

    Data augmentation for housing prices

    Content

    US Housing Data for 2008-2009 (pre crisis and crisis year) to predict housing prices more accurate

    Inspiration

    Housing price prediction competition on Kaggle

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Tushar Paul (2023). House Price Prediction Dataset & Code [Dataset]. http://doi.org/10.34740/kaggle/ds/3757184
Organization logo

House Price Prediction Dataset & Code

Predicting price of house in metropolitan cities (Dataset & Code)

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Sep 19, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Tushar Paul
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

House price prediction dataset

This dataset comprises housing data for various metropolitan cities of India. It includes: - Collection of prices of new and resale houses - The amenities provided for each house

This housing dataset is useful for a range of stakeholders, including real estate agents, property developers, buyers, renters, and researchers interested in analyzing housing markets and trends in metropolitan cities across India. It can be used for market analysis, price prediction, property recommendations, and various other real estate-related tasks.

Shape of dataset : (6207, 40)

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F11965067%2F75861c40e86a4d2d10c044be79542436%2FCapture.JPG?generation=1704918894425981&alt=media" alt="">

Github Link : https://github.com/TusharPaul01/House-Price-Prediction

For more such dataset & code check : https://www.kaggle.com/tusharpaul2001

Search
Clear search
Close search
Google apps
Main menu