Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/4.2/customlicense?persistentId=doi:10.7910/DVN/BDWIC3https://dataverse.harvard.edu/api/datasets/:persistentId/versions/4.2/customlicense?persistentId=doi:10.7910/DVN/BDWIC3
Social Scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. In this article, we offer an approach, built on the technique of statistical simulation, to extract the currently overlooked information from any statistical method and to interpret and present it in a reader-friendly manner. Using this technique requires some expertise, which we try to provide herein, but its application should make the results of quantitative articles more informative and transparent. To illustrate our recommendations, we replicate the results of several published works, showing in each case how the authors' own concl usions can be expressed more sharply and informatively, and, without changing any data or statistical assumptions, how our approach reveals important new information about the research questions at hand. We also offer very easy-to-use Clarify software that implements our suggestions. See also: Unifying Statistical Analysis
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Statistical Analysis Software Market size was valued at USD 7,963.44 Million in 2023 and is projected to reach USD 13,023.63 Million by 2030, growing at a CAGR of 7.28% during the forecast period 2024-2030.
Global Statistical Analysis Software Market Drivers
The market drivers for the Statistical Analysis Software Market can be influenced by various factors. These may include:
Growing Data Complexity and Volume: The demand for sophisticated statistical analysis tools has been fueled by the exponential rise in data volume and complexity across a range of industries. Robust software solutions are necessary for organizations to evaluate and extract significant insights from huge datasets. Growing Adoption of Data-Driven Decision-Making: Businesses are adopting a data-driven approach to decision-making at a faster rate. Utilizing statistical analysis tools, companies can extract meaningful insights from data to improve operational effectiveness and strategic planning. Developments in Analytics and Machine Learning: As these fields continue to progress, statistical analysis software is now capable of more. These tools' increasing popularity can be attributed to features like sophisticated modeling and predictive analytics. A greater emphasis is being placed on business intelligence: Analytics and business intelligence are now essential components of corporate strategy. In order to provide business intelligence tools for studying trends, patterns, and performance measures, statistical analysis software is essential. Increasing Need in Life Sciences and Healthcare: Large volumes of data are produced by the life sciences and healthcare sectors, necessitating complex statistical analysis. The need for data-driven insights in clinical trials, medical research, and healthcare administration is driving the market for statistical analysis software. Growth of Retail and E-Commerce: The retail and e-commerce industries use statistical analytic tools for inventory optimization, demand forecasting, and customer behavior analysis. The need for analytics tools is fueled in part by the expansion of online retail and data-driven marketing techniques. Government Regulations and Initiatives: Statistical analysis is frequently required for regulatory reporting and compliance with government initiatives, particularly in the healthcare and finance sectors. In these regulated industries, statistical analysis software uptake is driven by this. Big Data Analytics's Emergence: As big data analytics has grown in popularity, there has been a demand for advanced tools that can handle and analyze enormous datasets effectively. Software for statistical analysis is essential for deriving valuable conclusions from large amounts of data. Demand for Real-Time Analytics: In order to make deft judgments fast, there is a growing need for real-time analytics. Many different businesses have a significant demand for statistical analysis software that provides real-time data processing and analysis capabilities. Growing Awareness and Education: As more people become aware of the advantages of using statistical analysis in decision-making, its use has expanded across a range of academic and research institutions. The market for statistical analysis software is influenced by the academic sector. Trends in Remote Work: As more people around the world work from home, they are depending more on digital tools and analytics to collaborate and make decisions. Software for statistical analysis makes it possible for distant teams to efficiently examine data and exchange findings.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming market for regression analysis tools! This comprehensive analysis explores market size, growth trends (CAGR), key players (IBM SPSS, SAS, Python Scikit-learn), and regional insights (Europe, North America). Learn how data-driven decision-making fuels demand for these essential predictive analytics tools.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Industrial Statistical Analysis System (ISAS) market is booming, projected to reach $12.42 billion by 2033 with a CAGR of 12%. Discover key trends, drivers, restraints, and leading companies shaping this data-driven revolution in industrial analytics. Learn more about this rapidly expanding market.
Facebook
TwitterBackground Microarray experiments offer a potent solution to the problem of making and comparing large numbers of gene expression measurements either in different cell types or in the same cell type under different conditions. Inferences about the biological relevance of observed changes in expression depend on the statistical significance of the changes. In lieu of many replicates with which to determine accurate intensity means and variances, reliable estimates of statistical significance remain problematic. Without such estimates, overly conservative choices for significance must be enforced. Results A simple statistical method for estimating variances from microarray control data which does not require multiple replicates is presented. Comparison of datasets from two commercial entities using this difference-averaging method demonstrates that the standard deviation of the signal scales at a level intermediate between the signal intensity and its square root. Application of the method to a dataset related to the β-catenin pathway yields a larger number of biologically reasonable genes whose expression is altered than the ratio method. Conclusions The difference-averaging method enables determination of variances as a function of signal intensities by averaging over the entire dataset. The method also provides a platform-independent view of important statistical properties of microarray data.
Facebook
TwitterThe Best Management Practices Statistical Estimator (BMPSE) version 1.2.0 was developed by the U.S. Geological Survey (USGS), in cooperation with the Federal Highway Administration (FHWA) Office of Project Delivery and Environmental Review to provide planning-level information about the performance of structural best management practices for decision makers, planners, and highway engineers to assess and mitigate possible adverse effects of highway and urban runoff on the Nation's receiving waters (Granato 2013, 2014; Granato and others, 2021). The BMPSE was assembled by using a Microsoft Access® database application to facilitate calculation of BMP performance statistics. Granato (2014) developed quantitative methods to estimate values of the trapezoidal-distribution statistics, correlation coefficients, and the minimum irreducible concentration (MIC) from available data. Granato (2014) developed the BMPSE to hold and process data from the International Stormwater Best Management Practices Database (BMPDB, www.bmpdatabase.org). Version 1.0 of the BMPSE contained a subset of the data from the 2012 version of the BMPDB; the current version of the BMPSE (1.2.0) contains a subset of the data from the December 2019 version of the BMPDB. Selected data from the BMPDB were screened for import into the BMPSE in consultation with Jane Clary, the data manager for the BMPDB. Modifications included identifying water quality constituents, making measurement units consistent, identifying paired inflow and outflow values, and converting BMPDB water quality values set as half the detection limit back to the detection limit. Total polycyclic aromatic hydrocarbons (PAH) values were added to the BMPSE from BMPDB data; they were calculated from individual PAH measurements at sites with enough data to calculate totals. The BMPSE tool can sort and rank the data, calculate plotting positions, calculate initial estimates, and calculate potential correlations to facilitate the distribution-fitting process (Granato, 2014). For water-quality ratio analysis the BMPSE generates the input files and the list of filenames for each constituent within the Graphical User Interface (GUI). The BMPSE calculates the Spearman’s rho (ρ) and Kendall’s tau (τ) correlation coefficients with their respective 95-percent confidence limits and the probability that each correlation coefficient value is not significantly different from zero by using standard methods (Granato, 2014). If the 95-percent confidence limit values are of the same sign, then the correlation coefficient is statistically different from zero. For hydrograph extension, the BMPSE calculates ρ and τ between the inflow volume and the hydrograph-extension values (Granato, 2014). For volume reduction, the BMPSE calculates ρ and τ between the inflow volume and the ratio of outflow to inflow volumes (Granato, 2014). For water-quality treatment, the BMPSE calculates ρ and τ between the inflow concentrations and the ratio of outflow to inflow concentrations (Granato, 2014; 2020). The BMPSE also calculates ρ between the inflow and the outflow concentrations when a water-quality treatment analysis is done. The current version (1.2.0) of the BMPSE also has the option to calculate urban-runoff quality statistics from inflows to BMPs by using computer code developed for the Highway Runoff Database (Granato and Cazenas, 2009;Granato, 2019). Granato, G.E., 2013, Stochastic empirical loading and dilution model (SELDM) version 1.0.0: U.S. Geological Survey Techniques and Methods, book 4, chap. C3, 112 p., CD-ROM https://pubs.usgs.gov/tm/04/c03 Granato, G.E., 2014, Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs): U.S. Geological Survey Scientific Investigations Report 2014–5037, 37 p., http://dx.doi.org/10.3133/sir20145037. Granato, G.E., 2019, Highway-Runoff Database (HRDB) Version 1.1.0: U.S. Geological Survey data release, https://doi.org/10.5066/P94VL32J. Granato, G.E., and Cazenas, P.A., 2009, Highway-Runoff Database (HRDB Version 1.0)--A data warehouse and preprocessor for the stochastic empirical loading and dilution model: Washington, D.C., U.S. Department of Transportation, Federal Highway Administration, FHWA-HEP-09-004, 57 p. https://pubs.usgs.gov/sir/2009/5269/disc_content_100a_web/FHWA-HEP-09-004.pdf Granato, G.E., Spaetzel, A.B., and Medalie, L., 2021, Statistical methods for simulating structural stormwater runoff best management practices (BMPs) with the stochastic empirical loading and dilution model (SELDM): U.S. Geological Survey Scientific Investigations Report 2020–5136, 41 p., https://doi.org/10.3133/sir20205136
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Proteomics is a data-rich science with complex experimental designs and an intricate measurement process. To obtain insights from the large data sets produced, statistical methods, including machine learning, are routinely applied. For a quantity of interest, many of these approaches only produce a point estimate, such as a mean, leaving little room for more nuanced interpretations. By contrast, Bayesian statistics allows quantification of uncertainty through the use of probability distributions. These probability distributions enable scientists to ask complex questions of their proteomics data. Bayesian statistics also offers a modular framework for data analysis by making dependencies between data and parameters explicit. Hence, specifying complex hierarchies of parameter dependencies is straightforward in the Bayesian framework. This allows us to use a statistical methodology which equals, rather than neglects, the sophistication of experimental design and instrumentation present in proteomics. Here, we review Bayesian methods applied to proteomics, demonstrating their potential power, alongside the challenges posed by adopting this new statistical framework. To illustrate our review, we give a walk-through of the development of a Bayesian model for dynamic organic orthogonal phase-separation (OOPS) data.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data is publicly available on GitHub here. It can be utilized for EDA, Statistical Analysis, and Visualizations.
The data set ifood_df.csv consists of 2206 customers of XYZ company with data on:
- Customer profiles
- Product preferences
- Campaign successes/failures
- Channel performance
I do not own this dataset. I am simply making it accessible on this platform via the public GitHub link.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for statistical analysis software was estimated at USD 11.3 billion in 2023 and is projected to reach USD 21.6 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.5% during the forecast period. This substantial growth can be attributed to the increasing complexity of data in various industries and the rising need for advanced analytical tools to derive actionable insights.
One of the primary growth factors for this market is the increasing demand for data-driven decision-making across various sectors. Organizations are increasingly recognizing the value of data analytics in enhancing operational efficiency, reducing costs, and identifying new business opportunities. The proliferation of big data and the advent of technologies such as artificial intelligence and machine learning are further fueling the demand for sophisticated statistical analysis software. Additionally, the growing adoption of cloud computing has significantly reduced the cost and complexity of deploying advanced analytics solutions, making them more accessible to organizations of all sizes.
Another critical driver for the market is the increasing emphasis on regulatory compliance and risk management. Industries such as finance, healthcare, and manufacturing are subject to stringent regulatory requirements, necessitating the use of advanced analytics tools to ensure compliance and mitigate risks. For instance, in the healthcare sector, statistical analysis software is used for clinical trials, patient data management, and predictive analytics to enhance patient outcomes and ensure regulatory compliance. Similarly, in the financial sector, these tools are used for fraud detection, credit scoring, and risk assessment, thereby driving the demand for statistical analysis software.
The rising trend of digital transformation across industries is also contributing to market growth. As organizations increasingly adopt digital technologies, the volume of data generated is growing exponentially. This data, when analyzed effectively, can provide valuable insights into customer behavior, market trends, and operational efficiencies. Consequently, there is a growing need for advanced statistical analysis software to analyze this data and derive actionable insights. Furthermore, the increasing integration of statistical analysis tools with other business intelligence and data visualization tools is enhancing their capabilities and driving their adoption across various sectors.
From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies and a high level of adoption of advanced analytics solutions. However, the Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to the increasing adoption of digital technologies and the growing emphasis on data-driven decision-making in countries such as China and India. The region's rapidly expanding IT infrastructure and increasing investments in advanced analytics solutions are further contributing to this growth.
The statistical analysis software market can be segmented by component into software and services. The software segment encompasses the core statistical analysis tools and platforms used by organizations to analyze data and derive insights. This segment is expected to hold the largest market share, driven by the increasing adoption of data analytics solutions across various industries. The availability of a wide range of software solutions, from basic statistical tools to advanced analytics platforms, is catering to the diverse needs of organizations, further driving the growth of this segment.
The services segment includes consulting, implementation, training, and support services provided by vendors to help organizations effectively deploy and utilize statistical analysis software. This segment is expected to witness significant growth during the forecast period, driven by the increasing complexity of data analytics projects and the need for specialized expertise. As organizations seek to maximize the value of their data analytics investments, the demand for professional services to support the implementation and optimization of statistical analysis solutions is growing. Furthermore, the increasing trend of outsourcing data analytics functions to third-party service providers is contributing to the growth of the services segment.
Within the software segment, the market can be further categori
Facebook
TwitterWhat exactly is data analytics and do you want to learn so Visit BookMyShiksha they provide the Best Data Analytics Course in Delhi, INDIA. Analytics can be defined as "the science of analysis." A more practical definition, however, would be how an entity, such as a business, arrives at an optimal or realistic decision based on available data. Business managers may choose to make decisions based on past experiences or rules of thumb, or there may be other qualitative aspects to decision-making. Still, it will not be an analytical decision-making process unless data is considered.
Analytics has been used in business since Frederick Winslow Taylor pioneered time management exercises in the late 1800s. Henry Ford revolutionized manufacturing by measuring the pacing of the assembly line. However, analytics gained popularity in the late 1960s, when computers were used in decision support systems. Analytics has evolved since then, with the development of enterprise resource planning (ERP) systems, data warehouses, and a wide range of other hardware and software tools and applications.
Analytics is now used by businesses of all sizes. For example, if you ask my fruit vendor why he stopped servicing our street, he will tell you that we try to bargain a lot, which causes him to lose money, but on the road next to mine, he has some great customers for whom he provides excellent service. This is the nucleus of analytics. Our fruit vendor TESTED servicing my street and realised he was losing money - within a month, he stopped servicing us and will not show up even if we ask him. How many companies today are aware of who their MOST PROFITABLE CUSTOMERS are? Do they know who their most profitable customers are? And, knowing which customers are the most profitable, how should you direct your efforts to acquire the MOST PROFITABLE customers?
Analytics is used to drive the overall organizational strategy in large corporations. Here are a few examples: • Capital One, a credit card company based in the United States, employs analytics to differentiate customers based on credit risk and to match customer characteristics with appropriate product offerings.
• Harrah's Casino, another American company, discovered that, contrary to popular belief, their most profitable customers are those who play slots. They have developed a mamarketing program to attract and retain their MOST PROFITABLE CUSTOMERS in order to capitalise on this insight.
• Netflicks, an online movie service, recommends the most logical movies based on past behavior. This model has increased their sales because the movie choices are based on the customers' preferences, and thus the experience is tailored to each individual.
Analytics is commonly used to study business data using statistical analysis to discover and understand historical patterns in order to predict and improve future business performance. In addition, some people use the term to refer to the application of mathematics in business. Others believe that the field of analytics includes the use of operations research, statistics, and probability; however, limiting the field of Best Big Data Analytics Services to statistics and mathematics would be incorrect.
While the concept is simple and intuitive, the widespread use of analytics to drive business is still in its infancy. Stay tuned for the second part of this article to learn more about the Science of Analytics.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Online Data Science Training Programs Market Size 2025-2029
The online data science training programs market size is forecast to increase by USD 8.67 billion, at a CAGR of 35.8% between 2024 and 2029.
The market is experiencing significant growth due to the increasing demand for data science professionals in various industries. The job market offers lucrative opportunities for individuals with data science skills, making online training programs an attractive option for those seeking to upskill or reskill. Another key driver in the market is the adoption of microlearning and gamification techniques in data science training. These approaches make learning more engaging and accessible, allowing individuals to acquire new skills at their own pace. Furthermore, the availability of open-source learning materials has democratized access to data science education, enabling a larger pool of learners to enter the field. However, the market also faces challenges, including the need for continuous updates to keep up with the rapidly evolving data science landscape and the lack of standardization in online training programs, which can make it difficult for employers to assess the quality of graduates. Companies seeking to capitalize on market opportunities should focus on offering up-to-date, high-quality training programs that incorporate microlearning and gamification techniques, while also addressing the challenges of continuous updates and standardization. By doing so, they can differentiate themselves in a competitive market and meet the evolving needs of learners and employers alike.
What will be the Size of the Online Data Science Training Programs Market during the forecast period?
Request Free SampleThe online data science training market continues to evolve, driven by the increasing demand for data-driven insights and innovations across various sectors. Data science applications, from computer vision and deep learning to natural language processing and predictive analytics, are revolutionizing industries and transforming business operations. Industry case studies showcase the impact of data science in action, with big data and machine learning driving advancements in healthcare, finance, and retail. Virtual labs enable learners to gain hands-on experience, while data scientist salaries remain competitive and attractive. Cloud computing and data science platforms facilitate interactive learning and collaborative research, fostering a vibrant data science community. Data privacy and security concerns are addressed through advanced data governance and ethical frameworks. Data science libraries, such as TensorFlow and Scikit-Learn, streamline the development process, while data storytelling tools help communicate complex insights effectively. Data mining and predictive analytics enable organizations to uncover hidden trends and patterns, driving innovation and growth. The future of data science is bright, with ongoing research and development in areas like data ethics, data governance, and artificial intelligence. Data science conferences and education programs provide opportunities for professionals to expand their knowledge and expertise, ensuring they remain at the forefront of this dynamic field.
How is this Online Data Science Training Programs Industry segmented?
The online data science training programs industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeProfessional degree coursesCertification coursesApplicationStudentsWorking professionalsLanguageR programmingPythonBig MLSASOthersMethodLive streamingRecordedProgram TypeBootcampsCertificatesDegree ProgramsGeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)
By Type Insights
The professional degree courses segment is estimated to witness significant growth during the forecast period.The market encompasses various segments catering to diverse learning needs. The professional degree course segment holds a significant position, offering comprehensive and in-depth training in data science. This segment's curriculum covers essential aspects such as statistical analysis, machine learning, data visualization, and data engineering. Delivered by industry professionals and academic experts, these courses ensure a high-quality education experience. Interactive learning environments, including live lectures, webinars, and group discussions, foster a collaborative and engaging experience. Data science applications, including deep learning, computer vision, and natural language processing, are integral to the market's growth. Data analysis, a crucial application, is gaining traction due to the increasing demand for data-driven decisio
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Science Platform Market Size 2025-2029
The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.
Major Market Trends & Insights
North America dominated the market and accounted for a 48% growth during the forecast period.
By Deployment - On-premises segment was valued at USD 38.70 million in 2023
By Component - Platform segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 1.00 million
Market Future Opportunities: USD 763.90 million
CAGR : 40.2%
North America: Largest market in 2023
Market Summary
The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud
Component
Platform
Services
End-user
BFSI
Retail and e-commerce
Manufacturing
Media and entertainment
Others
Sector
Large enterprises
SMEs
Application
Data Preparation
Data Visualization
Machine Learning
Predictive Analytics
Data Governance
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.
Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.
API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.
Request Free Sample
The On-premises segment was valued at USD 38.70 million in 2019 and showed
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 9.0(USD Billion) |
| MARKET SIZE 2025 | 10.05(USD Billion) |
| MARKET SIZE 2035 | 30.0(USD Billion) |
| SEGMENTS COVERED | Application, Deployment Model, End User, Functionality, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Growing demand for data-driven insights, Increasing adoption of machine learning, Rising need for data visualization tools, Expanding use of big data analytics, Emergence of cloud-based solutions |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | RapidMiner, IBM, Snowflake, TIBCO Software, Datarobot, Oracle, Tableau, Teradata, MathWorks, Microsoft, Cloudera, Google, SAS Institute, Alteryx, Qlik, DataRobot |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Increased demand for AI solutions, Growing importance of big data analytics, Rising adoption of cloud-based tools, Integration of automation technologies, Expanding use cases across industries |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 11.6% (2025 - 2035) |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains a Jupyter Notebook that is used to introduce hydrologic data analysis and conservation laws. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about
In this activity, the student learns how to (1) calculate the residence time of water in land and rivers for the global hydrologic cycle; (2) quantify the relative and absolute uncertainties in components of the water balance; (3) navigate public websites and databases, extract key watershed attributes, and perform basic hydrologic data analysis for a watershed of interest; (4) assess, compare, and interpret hydrologic trends in the context of a specific watershed.
Please note that in problems 3-8, the user is asked to use an R package (i.e., dataRetrieval) and select a U.S. Geological Survey (USGS) streamflow gage to retrieve streamflow data and then apply the hydrological data analysis to the watershed of interest. We acknowledge that the material relies on USGS data that are only available within the U.S. If running for other watersheds of interest outside the U.S. or wishing to work with other datasets, the user must take some further steps and develop codes to prepare the streamflow dataset. Once a streamflow time series dataset is obtained for an international catchment of interest, the user would need to read that file into the workspace before working through subsequent analyses.
Facebook
Twitterhttps://market.biz/privacy-policyhttps://market.biz/privacy-policy
Introduction
Big Data Statistics: Big Data Statistics involves the gathering, analysis, and interpretation of large volumes of data from diverse sources, including social media, sensors, online transactions, and digital devices. As businesses increasingly adopt data-driven strategies, the role of big data becomes more crucial.
By applying advanced statistical methods and leveraging powerful computing technologies, organizations can uncover valuable patterns, trends, and insights that fuel innovation and enhance competitive positioning. The growth of technologies such as machine learning, artificial intelligence, and cloud computing has enabled more efficient processing and analysis of massive datasets, leading to improvements in customer experience, operational efficiency, and strategic decision-making.
The global market for big data analytics is expected to grow rapidly, with sectors like healthcare, finance, retail, and manufacturing leading the way in adopting big data solutions.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Simulated user-aggregated data from an experiment with webpage views and button clicks attributes. Can be very useful for preparing for interviews and practicing statistical tests. The data was prepared using a special selection of parameters: success_rate, uplift, beta, skew
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public health-related decision-making on policies aimed at controlling the COVID-19 pandemic outbreak depends on complex epidemiological models that are compelled to be robust and use all relevant available data. This data article provides a new combined worldwide COVID-19 dataset obtained from official data sources with improved systematic measurement errors and a dedicated dashboard for online data visualization and summary. The dataset adds new measures and attributes to the normal attributes of official data sources, such as daily mortality, and fatality rates. We used comparative statistical analysis to evaluate the measurement errors of COVID-19 official data collections from the Chinese Center for Disease Control and Prevention (Chinese CDC), World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC). The data is collected by using text mining techniques and reviewing pdf reports, metadata, and reference data. The combined dataset includes complete spatial data such as countries area, international number of countries, Alpha-2 code, Alpha-3 code, latitude, longitude, and some additional attributes such as population. The improved dataset benefits from major corrections on the referenced data sets and official reports such as adjustments in the reporting dates, which suffered from a one to two days lag, removing negative values, detecting unreasonable changes in historical data in new reports and corrections on systematic measurement errors, which have been increasing as the pandemic outbreak spreads and more countries contribute data for the official repositories. Additionally, the root mean square error of attributes in the paired comparison of datasets was used to identify the main data problems. The data for China is presented separately and in more detail, and it has been extracted from the attached reports available on the main page of the CCDC website. This dataset is a comprehensive and reliable source of worldwide COVID-19 data that can be used in epidemiological models assessing the magnitude and timeline for confirmed cases, long-term predictions of deaths or hospital utilization, the effects of quarantine, stay-at-home orders and other social distancing measures, the pandemic’s turning point or in economic and social impact analysis, helping to inform national and local authorities on how to implement an adaptive response approach to re-opening the economy, re-open schools, alleviate business and social distancing restrictions, design economic programs or allow sports events to resume.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quantitative literacy is a foundational component of success in STEM disciplines and in life. Quantitative concepts and data-rich activities in undergraduate geoscience courses can strengthen geoscience majors’ understanding of geologic phenomena and prepare them for future careers and graduate school, and provide real-world context to apply quantitative thinking for non-STEM students. We use self-reported teaching practices from the 2016 National Geoscience Faculty Survey to document the extent to which undergraduate geoscience instructors emphasize quantitative skills (algebra, statistics, and calculus) and data analysis skills in introductory (n = 1096) and majors (n = 1066) courses. Respondents who spent more than 20% of class time on student activities, questions, and discussions, taught small classes, or engaged more with the geoscience community through research or improving teaching incorporated statistical analyses and data analyses more frequently in their courses. Respondents from baccalaureate institutions reported use of a wider variety of data analysis skills in all courses compared with respondents from other types of institutions. Additionally, respondents who reported using more data analysis skills in their courses also used a broader array of strategies to prepare students for the geoscience workforce. These correlations suggest that targeted professional development could increase instructors’ use of quantitative and data analysis skills to meet the needs of their students in context.
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).