Facebook
TwitterAccording to exit polling in ten key states of the 2024 presidential election in the United States, Donald Trump received the most support from men between the ages of ** and **. In comparison, ** percent of women between the ages of ** and ** reported voting for Kamala Harris.
Facebook
TwitterPROBLEM AND OPPORTUNITY In the United States, voting is largely a private matter. A registered voter is given a randomized ballot form or machine to prevent linkage between their voting choices and their identity. This disconnect supports confidence in the election process, but it provides obstacles to an election's analysis. A common solution is to field exit polls, interviewing voters immediately after leaving their polling location. This method is rife with bias, however, and functionally limited in direct demographics data collected. For the 2020 general election, though, most states published their election results for each voting location. These publications were additionally supported by the geographical areas assigned to each location, the voting precincts. As a result, geographic processing can now be applied to project precinct election results onto Census block groups. While precinct have few demographic traits directly, their geographies have characteristics that make them projectable onto U.S. Census geographies. Both state voting precincts and U.S. Census block groups: are exclusive, and do not overlap are adjacent, fully covering their corresponding state and potentially county have roughly the same size in area, population and voter presence Analytically, a projection of local demographics does not allow conclusions about voters themselves. However, the dataset does allow statements related to the geographies that yield voting behavior. One could say, for example, that an area dominated by a particular voting pattern would have mean traits of age, race, income or household structure. The dataset that results from this programming provides voting results allocated by Census block groups. The block group identifier can be joined to Census Decennial and American Community Survey demographic estimates. DATA SOURCES The state election results and geographies have been compiled by Voting and Election Science team on Harvard's dataverse. State voting precincts lie within state and county boundaries. The Census Bureau, on the other hand, publishes its estimates across a variety of geographic definitions including a hierarchy of states, counties, census tracts and block groups. Their definitions can be found here. The geometric shapefiles for each block group are available here. The lowest level of this geography changes often and can obsolesce before the next census survey (Decennial or American Community Survey programs). The second to lowest census level, block groups, have the benefit of both granularity and stability however. The 2020 Decennial survey details US demographics into 217,740 block groups with between a few hundred and a few thousand people. Dataset Structure The dataset's columns include: Column Definition BLOCKGROUP_GEOID 12 digit primary key. Census GEOID of the block group row. This code concatenates: 2 digit state 3 digit county within state 6 digit Census Tract identifier 1 digit Census Block Group identifier within tract STATE State abbreviation, redundent with 2 digit state FIPS code above REP Votes for Republican party candidate for president DEM Votes for Democratic party candidate for president LIB Votes for Libertarian party candidate for president OTH Votes for presidential candidates other than Republican, Democratic or Libertarian AREA square kilometers of area associated with this block group GAP total area of the block group, net of area attributed to voting precincts PRECINCTS Number of voting precincts that intersect this block group ASSUMPTIONS, NOTES AND CONCERNS: Votes are attributed based upon the proportion of the precinct's area that intersects the corresponding block group. Alternative methods are left to the analyst's initiative. 50 states and the District of Columbia are in scope as those U.S. possessions voting in the general election for the U.S. Presidency. Three states did not report their results at the precinct level: South Dakota, Kentucky and West Virginia. A dummy block group is added for each of these states to maintain national totals. These states represent 2.1% of all votes cast. Counties are commonly coded using FIPS codes. However, each election result file may have the county field named differently. Also, three states do not share county definitions - Delaware, Massachusetts, Alaska and the District of Columbia. Block groups may be used to capture geographies that do not have population like bodies of water. As a result, block groups without intersection voting precincts are not uncommon. In the U.S., elections are administered at a state level with the Federal Elections Commission compiling state totals against the Electoral College weights. The states have liberty, though, to define and change their own voting precincts https://en.wikipedia.org/wiki/Electoral_precinct. The Census Bureau... Visit https://dataone.org/datasets/sha256%3A05707c1dc04a814129f751937a6ea56b08413546b18b351a85bc96da16a7f8b5 for complete metadata about this dataset.
Facebook
TwitterThis graph shows the percentage of votes of the 2016 presidential elections in the United States on November 9, 2016, by age. According to the exit polls, about 56 percent of voters aged 18 to 24 voted for Hillary Clinton.
Facebook
TwitterSince 1964, voter turnout rates in U.S. presidential elections have generally fluctuated across all age groups, falling to a national low in 1996, before rising again in the past two decades. Since 1988, there has been a direct correlation with voter participation and age, as people become more likely to vote as they get older. Participation among eligible voters under the age of 25 is the lowest of all age groups, and in the 1996 and 2000 elections, fewer than one third of eligible voters under the age of 25 participated, compared with more than two thirds of voters over 65 years.
Facebook
TwitterSimilar to previous Romanian Presidential elections, the group of people with the highest voting attendance was represented by the 45-64 age group. The age group of 18-24 years had the smallest voting representation at the Romanian Presidential elections. Another aspect outlined by this statistic was the increasing attendance for the second round of elections compared to the first round for every age group.
Facebook
TwitterAccording to an October 2024 survey, young Americans were much more likely to vote for Kamala Harris in the November 2024 presidential elections. Of those between the ages of 18 and 29, 60 percent said they were planning on voting for Harris, compared to 33 percent who said they planned on voting for Trump. In contrast, Trump was much more popular among those between 45 and 64 years old.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains the county-wise vote share of the United States presidential election of 2020, and in the future 2024, the main advantage of the dataset is that it contains various important county statistics such as the counties racial composition, median and mean income, income inequality, population density, education level, population and the counties occupational distribution.
_Imp: this dataset will be updated as the 2024 results come in, I will also be adding more county demographic data, if you have any queries or suggestions please feel free to comment _
The reasons for constructing this dataset are many, however the prime reason was to aggregate all the data on counties along with the election result data for easy analysis in one place. I noticed that Kaggle contains no datasets with detailed county information, and that using the US census bureau site is pretty difficult and time consuming to extract data so it would be better to have a pre-prepared table of data
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
Presidential and Vice Presidential Election - Number of voters by age group (by county and city)
Facebook
TwitterWanted to study does following factors impacted US president elections. I tried to analyse 6 states data out of which four won by democrats and 6 by republicans. The factors are . Education,Health,Poverty/Income,Race(%of whites),Median Age etc.
Here are the columns that are being analyzed.
Average of Republicans 2016 Average of Democrats 2016 Difference(Rep-Dem) Average of Poverty.Rate.below.federal.poverty.threshold Average of Graduate Degree Average of Median Earnings 2010 Average of Gini.Coefficient Average of White (Not Latino) Population Average of School Enrollment Average of Infant.mortality Average of Unemployment Average of median_age Average of Violent.crime
Thanks to Opendatasoft https://data.opendatasoft.com/explore/dataset/usa-2016-presidential-election-by-county%40public/information/ for providing data at county level. Data has been rolled up to state level.
Well does perceptions are backed by data or not.
Facebook
TwitterIn U.S. presidential elections since 1964, voters in the 18 to 24 age bracket have traditionally had the lowest turnout rates among all ethnicities. From 1964 until 1996, white voters in this age bracket had the highest turnout rates of the four major ethnic groups in the U.S., particularly those of non-Hispanic origin. However participation was highest among young Black voters in 2008 and 2012, during the elections where Barack Obama, the U.S.' first African-American major party candidate, was nominated. Young Asian American and Hispanic voters generally have the lowest turnout rates, and were frequently below half of the overall 18 to 24 turnout before the 2000s.
Facebook
TwitterAccording to exit polling in the 2020 Presidential Election in the United States, ** percent of surveyed 18 to 29 year old voters reported voting for former Vice President Joe Biden. In the race to become the next president of the United States, ** percent of voters aged 65 and older reported voting for incumbent President Donald Trump.
Facebook
Twitterhttp://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This dataset provides county and congressional district–level returns for U.S. House of Representatives general elections, compiled by Dave Leip’s Atlas of U.S. Presidential Elections. For each election year included, the dataset is distributed as an Excel workbook (.xlsx) with multiple worksheets, accompanied by machine-readable CSV files at the county, congressional district, and state levels. The codebook for the data collection, describing variable names and meanings, is provided as an .rtf file.The Excel workbook contains:Candidates – names and party ballot listings by state.Vote Data by State – statewide vote totals for each candidate, with boundary identifiers (FIPS codes).Vote Data by County – county-level vote totals for all states and the District of Columbia, with FIPS codes.Vote Data by Town – town-level results for New England states (ME, MA, CT, RI, VT, NH), with FIPS codes.Vote Data by Congressional District – vote totals for all congressional districts nationwide.Graphs – pie charts summarizing results by state and nationally.Party – statewide vote strength of major parties.Statistics – summary statistics including closest races, maxima, and other aggregate indicators.Voter Turnout by State – voting-age population and turnout data by state.Data Sources – documentation of sources used to compile the dataset.
Facebook
TwitterThe Cumulative Report includes complete official election results for the 2020 Presidential General Election as of November 29, 2020. Results are released in three separate reports: The Vote By Mail 1 report contains complete results for ballots received by the Board of Elections on or before October 21, 2020, that could be accepted and opened before Election Day. The Vote By Mail 2 Canvass report contains complete results for all remaining Vote By Mail ballots that were received in a drop box or in person at the Board of Elections by 8:00pm on November 3, or were postmarked by November 3 and received timely by the Board of Elections by 10:00am on Friday, November 13. The Vote By Mail 2 Canvass begins on Thursday, November 5. The Provisional Canvass contains complete results for all provisional ballots issued to voters at Early Voting or on Election Day. For more information on this process, please visit the 2020 Presidential General Election Ballot Canvass webpage at https://www.montgomerycountymd.gov/Elections/2020GeneralElection/general-ballot-canvass.html. For turnout information, please visit the Maryland State Board of Elections Press Room webpage at https://elections.maryland.gov/press_room/index.html.
Facebook
TwitterThis web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/3116/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3116/terms
This special topic poll, fielded November 12, 2000, is part of a continuing series of monthly surveys that solicit public opinion on the presidency and on a range of other political and social issues. This data collection focused on the presidential election that took place on November 7, 2000. Respondents were asked about the extent of their personal interest in and concern about the situation in the country five days after the election. Questions examined opinions on the way various groups were handling the election, including Vice President Al Gore's and Texas governor George W. Bush's campaigns, local officials in Florida, and the news media. Respondents were also asked whom they wanted to see become the next president. Opinions were elicited on the need for a new presidential election in Palm Beach County, Florida, in the entire state of Florida, in other states where election results were very close, and across the entire country. Additional topics covered whether George W. Bush and Al Gore should accept the recount in Florida or should ask courts to look into whether the voting was unfair and if they should ask for a recount in other states where the results were very close. Those polled expressed their views about electing the president by direct popular vote versus by the Electoral College, their confidence about the accuracy of Florida's recount, and whether the ballot that was used in Palm Beach County was fair. The survey also investigated what impact the unclear post-election situation would have, especially on the country's system of presidential elections. Background information on respondents includes age, gender, education, race, party affiliation, political orientation, and voter registration.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: This repository contains the full dataset and model implementation for the analysis of voting patterns in Romania's 2024 presidential elections, focusing on the relationship between territorial economic structures and electoral preferences. The models estimate vote dominance at LAU level using sectoral, demographic, and regional predictors, including spatial autoregression. Particular attention is given to the overrepresentation of Bucharest in national-level FDI statistics, which is corrected through a GDP-based imputation model. For reproducibility, the repository includes: Cleaned and structured input data (LAU, NUTS3), all modelling scripts in R, Tableau maps for visual analysis and public presentation.File DescriptionsLAU.csvThis dataset contains the local-level electoral and socio-economic data for all Romanian LAU2 units used in the spatial and statistical analyses. The file is used as the base for all models and includes identifiers for merging with the shapefile or spatial weights. It includes:- Electoral results by presidential candidate (2024, simulated),- Dominant vote type per locality,- Sectoral employment categories,- Demographic variables (ethnicity, education, age),- Regional and metropolitan classifications,- Weights for modelling.NUTS3.csvThis dataset provides county-level economic indicators (GDP and FDI) over the period 2011–2022. The file supports the construction of regional indicators such as FDI-to-GDP ratios and export structure. Notably, the file includes both original and corrected values of FDI for Bucharest, following the imputation procedure described in the model script.model.RThis R script contains the full modelling pipeline. The script includes both a model variant with Bucharest excluded and an alternative version using corrected FDI values, confirming the robustness of coefficients across specifications. It includes:- Pre-processing of LAU and NUTS3 data,- Imputation of Bucharest FDI using a linear model on GDP,- Survey-weighted logistic regression models for vote dominance per candidate,- Multinomial and hierarchical logistic models,- Seemingly Unrelated Regressions (SUR),- Spatial error models (SEM),- Principal Component Analysis on SEM residuals,- Latent dominance prediction using softmax transformation,- Export of predicted latent vote maps.Maps.twbxThis Tableau workbook contains all final cartographic representations.The workbook uses a consistent colour palette based on candidate-typified economic structures (industry, services, agriculture, shrinking).- Choropleth maps of dominant vote by candidate,- Gradients reflecting latent probabilities from spatial models,- Maps of residuals and ideological factor scores (PCA-derived),- Sectoral economic geographies per county and per locality,- Overlay of dominant vote and sectoral transformation types.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
There is a vast amount of literature in different disciplines, such as economics, political science, and data science, about what factors affect the prediction of election outcomes. Various data are being considered to predict the election results, such as social media posts, survey results, referendum judgments, etc.
There are various sources, such as fundamental variables, to predict election results, especially in the United States. Fundamentals refer to variables independent of the current election rhetoric, the campaign performance of a candidate immediately before an election, or social media posts. Fundamental variables include individuals' annual income, annual total family income, age, gender, marital status, race, citizenship status, language spoken at home, education level, and employment status at the individual level. Using these fundamental variables, we aim to determine whether we can predict election outcomes.
Datasets and demographic information are scraped and merged from the US Census website (https://usa.ipums.org/usa/) and MIT Election Data + Science Lab (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ).
This dataset is aimed at highlighting the potential for predicting the United States presidential election outcomes at the county level based on the fundamental variables acquired from the American Community Survey data (ACS).
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Description:
This dataset contains comprehensive voting data for the 2024 US elections, focusing on general ballot measures. This information includes voting results from various sources and tracking public opinion about political parties and candidates across states and demographic groups. Each item in the dataset represents a specific poll. Along with detailed information about the dates of the polls. Survey organization, sample size, margin of error, Percentage of respondents supporting each political party or candidates
Key Features:
Poll Date:The date when the poll was conducted.
Polling Organization: The name of the organization that conducted the poll.
Sample Size: The number of respondents in the poll.
Margin of Error: The statistical margin of error for the poll results.
Party/Candidate Support: Percentage of respondents who support each political party or candidate.
State/Demographics: Geographic and demographic breakdowns of the polling data.
Use Cases:
Analyzing trends in public opinion leading up to the 2024 U.S. elections. Comparing support for different political parties and candidates over time. Studying the impact of key events on voter preferences. Informing political strategies and campaign planning.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Context: The Coronavirus disease 2019 (COVID-19) pandemic occurred during a time of political tension in the United States. County-level political environment may have been influential in COVID-19 outcomes. Objective: This study examined the association between county-level political environment and age-adjusted COVID-19 mortality rates from 2020 to 2022. Design & Setting: Political environment was measured by the 2020 Presidential election results and compared with age-adjusted COVID-19 mortality rates by county in Colorado. Main Outcome Measures: Rate ratios (RR) and 95% confidence intervals (CI) were estimated using negative binomial regression incorporating a population offset term. Models adjusted for populational differences using the demographics percentile from Colorado’s EnviroScreen Environmental Justice Tool. Results: Age-adjusted county mortality rates ranged from 14.3 to 446.8.0 per 100,000. 2021 COVID-19 mortality rates were nearly twice as high in counties voting for Donald Trump compared to those voting for Joseph Biden (adjusted RR = 1.98, 95% CI: 1.59, 2.47). Results for 2020 and 2022 mortality models were also in the positive direction, though the confidence intervals crossed null values. Conclusion: These results build on a growing body of evidence that the political environment may have been influential for COVID-19 mortality, helping to understand the drivers of health outcomes. Implications for the public health system as we shift into the endemic period of COVID-19 include motivation for collaborative work to restore and rebuild trust among and between stakeholders and the community, as well as increase health education given its’ influence on both individual and community behaviors.
Methods All exposures and covariate data was publicly available. Mortality outcome data obtained through a data request for Colorado Department of Public Health and Environment. Data was organized into an Excel file for ease of use and analyzed in R.
Facebook
TwitterAP VoteCast is a survey of the American electorate conducted by NORC at the University of Chicago for Fox News, NPR, PBS NewsHour, Univision News, USA Today Network, The Wall Street Journal and The Associated Press.
AP VoteCast combines interviews with a random sample of registered voters drawn from state voter files with self-identified registered voters selected using nonprobability approaches. In general elections, it also includes interviews with self-identified registered voters conducted using NORC’s probability-based AmeriSpeak® panel, which is designed to be representative of the U.S. population.
Interviews are conducted in English and Spanish. Respondents may receive a small monetary incentive for completing the survey. Participants selected as part of the random sample can be contacted by phone and mail and can take the survey by phone or online. Participants selected as part of the nonprobability sample complete the survey online.
In the 2020 general election, the survey of 133,103 interviews with registered voters was conducted between Oct. 26 and Nov. 3, concluding as polls closed on Election Day. AP VoteCast delivered data about the presidential election in all 50 states as well as all Senate and governors’ races in 2020.
This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!
Instead, use statistical software such as R or SPSS to weight the data.
National Survey
The national AP VoteCast survey of voters and nonvoters in 2020 is based on the results of the 50 state-based surveys and a nationally representative survey of 4,141 registered voters conducted between Nov. 1 and Nov. 3 on the probability-based AmeriSpeak panel. It included 41,776 probability interviews completed online and via telephone, and 87,186 nonprobability interviews completed online. The margin of sampling error is plus or minus 0.4 percentage points for voters and 0.9 percentage points for nonvoters.
State Surveys
In 20 states in 2020, AP VoteCast is based on roughly 1,000 probability-based interviews conducted online and by phone, and roughly 3,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.3 percentage points for voters and 5.5 percentage points for nonvoters.
In an additional 20 states, AP VoteCast is based on roughly 500 probability-based interviews conducted online and by phone, and roughly 2,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 2.9 percentage points for voters and 6.9 percentage points for nonvoters.
In the remaining 10 states, AP VoteCast is based on about 1,000 nonprobability interviews conducted online. In these states, the margin of sampling error is about plus or minus 4.5 percentage points for voters and 11.0 percentage points for nonvoters.
Although there is no statistically agreed upon approach for calculating margins of error for nonprobability samples, these margins of error were estimated using a measure of uncertainty that incorporates the variability associated with the poll estimates, as well as the variability associated with the survey weights as a result of calibration. After calibration, the nonprobability sample yields approximately unbiased estimates.
As with all surveys, AP VoteCast is subject to multiple sources of error, including from sampling, question wording and order, and nonresponse.
Sampling Details
Probability-based Registered Voter Sample
In each of the 40 states in which AP VoteCast included a probability-based sample, NORC obtained a sample of registered voters from Catalist LLC’s registered voter database. This database includes demographic information, as well as addresses and phone numbers for registered voters, allowing potential respondents to be contacted via mail and telephone. The sample is stratified by state, partisanship, and a modeled likelihood to respond to the postcard based on factors such as age, race, gender, voting history, and census block group education. In addition, NORC attempted to match sampled records to a registered voter database maintained by L2, which provided additional phone numbers and demographic information.
Prior to dialing, all probability sample records were mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Postcards were addressed by name to the sampled registered voter if that individual was under age 35; postcards were addressed to “registered voter” in all other cases. Telephone interviews were conducted with the adult that answered the phone following confirmation of registered voter status in the state.
Nonprobability Sample
Nonprobability participants include panelists from Dynata or Lucid, including members of its third-party panels. In addition, some registered voters were selected from the voter file, matched to email addresses by V12, and recruited via an email invitation to the survey. Digital fingerprint software and panel-level ID validation is used to prevent respondents from completing the AP VoteCast survey multiple times.
AmeriSpeak Sample
During the initial recruitment phase of the AmeriSpeak panel, randomly selected U.S. households were sampled with a known, non-zero probability of selection from the NORC National Sample Frame and then contacted by mail, email, telephone and field interviewers (face-to-face). The panel provides sample coverage of approximately 97% of the U.S. household population. Those excluded from the sample include people with P.O. Box-only addresses, some addresses not listed in the U.S. Postal Service Delivery Sequence File and some newly constructed dwellings. Registered voter status was confirmed in field for all sampled panelists.
Weighting Details
AP VoteCast employs a four-step weighting approach that combines the probability sample with the nonprobability sample and refines estimates at a subregional level within each state. In a general election, the 50 state surveys and the AmeriSpeak survey are weighted separately and then combined into a survey representative of voters in all 50 states.
State Surveys
First, weights are constructed separately for the probability sample (when available) and the nonprobability sample for each state survey. These weights are adjusted to population totals to correct for demographic imbalances in age, gender, education and race/ethnicity of the responding sample compared to the population of registered voters in each state. In 2020, the adjustment targets are derived from a combination of data from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, Catalist’s voter file and the Census Bureau’s 2018 American Community Survey. Prior to adjusting to population totals, the probability-based registered voter list sample weights are adjusted for differential non-response related to factors such as availability of phone numbers, age, race and partisanship.
Second, all respondents receive a calibration weight. The calibration weight is designed to ensure the nonprobability sample is similar to the probability sample in regard to variables that are predictive of vote choice, such as partisanship or direction of the country, which cannot be fully captured through the prior demographic adjustments. The calibration benchmarks are based on regional level estimates from regression models that incorporate all probability and nonprobability cases nationwide.
Third, all respondents in each state are weighted to improve estimates for substate geographic regions. This weight combines the weighted probability (if available) and nonprobability samples, and then uses a small area model to improve the estimate within subregions of a state.
Fourth, the survey results are weighted to the actual vote count following the completion of the election. This weighting is done in 10–30 subregions within each state.
National Survey
In a general election, the national survey is weighted to combine the 50 state surveys with the nationwide AmeriSpeak survey. Each of the state surveys is weighted as described. The AmeriSpeak survey receives a nonresponse-adjusted weight that is then adjusted to national totals for registered voters that in 2020 were derived from the U.S. Census Bureau’s November 2018 Current Population Survey Voting and Registration Supplement, the Catalist voter file and the Census Bureau’s 2018 American Community Survey. The state surveys are further adjusted to represent their appropriate proportion of the registered voter population for the country and combined with the AmeriSpeak survey. After all votes are counted, the national data file is adjusted to match the national popular vote for president.
Facebook
TwitterAccording to exit polling in ten key states of the 2024 presidential election in the United States, Donald Trump received the most support from men between the ages of ** and **. In comparison, ** percent of women between the ages of ** and ** reported voting for Kamala Harris.