100+ datasets found
  1. b

    Lower quartile house price (affordability ratios) - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Lower quartile house price (affordability ratios) - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/lower-quartile-house-price-affordability-ratios-wmca/
    Explore at:
    csv, excel, geojson, jsonAvailable download formats
    Dataset updated
    Dec 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This is the unadjusted lower quartile house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.

    The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.

    The lower quartile is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls three quarters of the way down the list, such that 75Percentage of transactions lie above and 25Percentage lie below that value. These are particularly useful for assessing housing affordability when viewed alongside average and lower quartile income for given areas.

    Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.

    The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi

    The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the lower quartile transactional value of houses and the overall market value of houses.

    If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported." Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.

  2. House-price-to-income ratio in selected countries worldwide 2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). House-price-to-income ratio in selected countries worldwide 2024 [Dataset]. https://www.statista.com/statistics/237529/price-to-income-ratio-of-housing-worldwide/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    Portugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.

  3. b

    Median house price (affordability ratios) - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median house price (affordability ratios) - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/median-house-price-affordability-ratios-wmca/
    Explore at:
    excel, geojson, json, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This is the unadjusted median house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.

    The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.

    The median is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls in the middle. The median is less susceptible to distortion by the presence of extreme values than is the mean. It is the most appropriate average to use because it best takes account of the skewed distribution of house prices.

    Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.

    The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi

    The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the median transactional value of houses and the overall market value of houses. Therefore these statistics differ to the new UK House Price Index (HPI) which reports mix-adjusted average house prices and house price indices.

    If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported. Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.

  4. Housing affordability index in the U.S. 2000-2024

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Housing affordability index in the U.S. 2000-2024 [Dataset]. https://www.statista.com/statistics/201568/change-in-the-composite-us-housing-affordability-index-since-1975/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Housing Affordability Index value in the United States plummeted in 2022, surpassing the historical record of ***** index points in 2006. In 2024, the housing affordability index measured **** index points, making it the second-worst year for homebuyers since the start of the observation period. What does the Housing Affordability Index mean? The Housing Affordability Index uses data provided by the National Association of Realtors (NAR). It measures whether a family earning the national median income can afford the monthly mortgage payments on a median-priced existing single-family home. An index value of 100 means that a family has exactly enough income to qualify for a mortgage on a home. The higher the index value, the more affordable a house is to a family. Key factors that drive the real estate market Income, house prices, and mortgage rates are some of the most important factors influencing homebuyer sentiment. When incomes increase, consumer power also increases. The median household income in the United States declined in 2022, affecting affordability. Additionally, mortgage interest rates have soared, adding to the financial burden of homebuyers. The sales price of existing single-family homes in the U.S. has increased year-on-year since 2011 and reached ******* U.S. dollars in 2023.

  5. House price to residence-based earnings ratio

    • ons.gov.uk
    • cy.ons.gov.uk
    • +1more
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price to residence-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/ratioofhousepricetoresidencebasedearningslowerquartileandmedian
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  6. U

    United States Housing Affordability Index: Median Price

    • ceicdata.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States Housing Affordability Index: Median Price [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index/housing-affordability-index-median-price
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2017 - Feb 1, 2018
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States Housing Affordability Index: Median Price data was reported at 260,500.000 USD in Sep 2018. This records a decrease from the previous number of 268,200.000 USD for Aug 2018. United States Housing Affordability Index: Median Price data is updated monthly, averaging 167,800.000 USD from Jan 1989 (Median) to Sep 2018, with 357 observations. The data reached an all-time high of 276,500.000 USD in Jun 2018 and a record low of 90,300.000 USD in Jan 1989. United States Housing Affordability Index: Median Price data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB018: Housing Affordability Index.

  7. F

    Housing Affordability Index (Fixed)

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Housing Affordability Index (Fixed) [Dataset]. https://fred.stlouisfed.org/series/FIXHAI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Description

    Graph and download economic data for Housing Affordability Index (Fixed) (FIXHAI) from Sep 2024 to Sep 2025 about fixed, housing, indexes, and USA.

  8. House price to workplace-based earnings ratio

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Mar 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). House price to workplace-based earnings ratio [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/housing/datasets/ratioofhousepricetoworkplacebasedearningslowerquartileandmedian
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 24, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Affordability ratios calculated by dividing house prices by gross annual workplace-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.

  9. C

    Housing Affordability

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Housing Affordability [Dataset]. https://data.ccrpc.org/dataset/housing-affordability
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]

    How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.

    The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.

    Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.

    Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.

    [1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.

    [2] Ibid.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  10. D

    Housing Affordability

    • catalog.dvrpc.org
    csv
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DVRPC (2025). Housing Affordability [Dataset]. https://catalog.dvrpc.org/dataset/housing-affordability
    Explore at:
    csv(17918), csv(11692), csv(22352), csv(8938), csv(6237), csv(4449), csv(2636), csv(4792), csv(1396), csv(1368), csv(2548)Available download formats
    Dataset updated
    Mar 17, 2025
    Dataset authored and provided by
    DVRPC
    License

    https://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html

    Description

    A commonly accepted threshold for affordable housing costs at the household level is 30% of a household's income. Accordingly, a household is considered cost burdened if it pays more than 30% of its income on housing. Households paying more than 50% are considered severely cost burdened. These thresholds apply to both homeowners and renters.

    The Housing Affordability indicator only measures cost burden among the region's households, and not the supply of affordable housing. The directionality of cost burden trends can be impacted by changes in both income and housing supply. If lower income households are priced out of a county or the region, it would create a downward trend in cost burden, but would not reflect a positive trend for an inclusive housing market.

  11. y

    US Fixed Housing Affordability Index

    • ycharts.com
    html
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Association of Realtors (2025). US Fixed Housing Affordability Index [Dataset]. https://ycharts.com/indicators/us_fixed_affordability_index
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    YCharts
    Authors
    National Association of Realtors
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 31, 1981 - Sep 30, 2025
    Area covered
    United States
    Variables measured
    US Fixed Housing Affordability Index
    Description

    View monthly updates and historical trends for US Fixed Housing Affordability Index. from United States. Source: National Association of Realtors. Track e…

  12. U

    United States HAI: First Time: Starter Home Price

    • ceicdata.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States HAI: First Time: Starter Home Price [Dataset]. https://www.ceicdata.com/en/united-states/housing-affordability-index-first-time-buyers/hai-first-time-starter-home-price
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2015 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Household Affordability
    Description

    United States HAI: First Time: Starter Home Price data was reported at 226,900.000 USD in Sep 2018. This records a decrease from the previous number of 227,800.000 USD for Jun 2018. United States HAI: First Time: Starter Home Price data is updated quarterly, averaging 119,900.000 USD from Mar 1981 (Median) to Sep 2018, with 151 observations. The data reached an all-time high of 227,800.000 USD in Jun 2018 and a record low of 54,700.000 USD in Mar 1981. United States HAI: First Time: Starter Home Price data remains active status in CEIC and is reported by National Association of Realtors. The data is categorized under Global Database’s United States – Table US.EB019: Housing Affordability Index: First Time Buyers.

  13. y

    Housing affordability (median house prices to earnings ratio) - Dataset -...

    • data.yorkopendata.org
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Housing affordability (median house prices to earnings ratio) - Dataset - York Open Data [Dataset]. https://data.yorkopendata.org/dataset/kpi-cjge171
    Explore at:
    Dataset updated
    Sep 6, 2023
    License

    Open Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
    License information was derived automatically

    Area covered
    York
    Description

    Housing affordability (median house prices to earnings ratio)

  14. f

    Data from: An international analysis of the price and affordability of beer

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Dec 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rossouw, Laura; Van Walbeek, Corné; Liber, Alex; Blecher, Evan (2018). An international analysis of the price and affordability of beer [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000667798
    Explore at:
    Dataset updated
    Dec 17, 2018
    Authors
    Rossouw, Laura; Van Walbeek, Corné; Liber, Alex; Blecher, Evan
    Description

    AimsTo apply methods for measuring the affordability of beer in a large cross section of countries, and to investigate trends in affordability of beer over time.MethodsWe use the Relative Income Price (RIP), which uses per capita GDP, to measure the affordability of beer in up to 92 countries from 1990 to 2016 (69 countries were included in 1990, however the survey has since grown to include 92 countries). In addition to affordability, we also investigate trends in the price of beer.ResultsWhile beer is, on average, similarly priced in high-income (HICs) and low- and middle-income countries (LMICs), it is significantly more affordable in HICs. There is significant variation in both price and affordability in HICs and in LMICs. Beer has become cheaper in real terms in 49% (18/37) of HICs and 43% (20/46) of LMICs. Beer became more affordable in most HICs (RIP: 30/37 or 81%) and LMICs (RIP: 42/44 or 95%)ConclusionsThe increased affordability over time of beer in most countries raises concerns about public health. Governments need to increase taxes on beer so that it becomes less affordable over time, in an effort to improve public health.

  15. y

    Housing affordability (house prices to earnings ratio)

    • data.yorkopendata.org
    • dataon.kisti.re.kr
    • +3more
    Updated Feb 4, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Housing affordability (house prices to earnings ratio) [Dataset]. https://data.yorkopendata.org/dataset/kpi-cjge170
    Explore at:
    Dataset updated
    Feb 4, 2016
    License

    Open Government Licence 2.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/
    License information was derived automatically

    Description

    Housing affordability (house prices to earnings ratio) *This indicator has been discontinued

  16. T

    Housing Affordability Index

    • internal.open.piercecountywa.gov
    • open.piercecountywa.gov
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Washington, Runstad Center for Real Estate Studies (2024). Housing Affordability Index [Dataset]. https://internal.open.piercecountywa.gov/w/q79c-akif/_variation_?cur=lp9HlbRa2Lb&from=root
    Explore at:
    kml, application/geo+json, csv, kmz, xlsx, xmlAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset authored and provided by
    University of Washington, Runstad Center for Real Estate Studies
    Description

    The Housing Affordability Index, calculated by the Runstad Center for Real Estate Studies, measures the ability of a middle-income family to carry the mortgage payments on a median-price home. When the index is 100 there is a balance between the family’s ability to pay and the cost. Higher indexes indicate housing is more affordable.

    For example, an index of 126 means that a median-income family has 26 percent more income than the bare minimum required to qualify for a mortgage on a median-price home. An index of 80 means that a median-income family has less income than the minimum required.

  17. a

    Location Affordability Index

    • hub.arcgis.com
    • hub-lincolninstitute.hub.arcgis.com
    • +6more
    Updated May 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). Location Affordability Index [Dataset]. https://hub.arcgis.com/maps/447a461f048845979f30a2478b9e65bb
    Explore at:
    Dataset updated
    May 10, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    There is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**

    Title: Location Affordability Index - NMCDC Copy

    Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.

    Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.

    Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC

    Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.

    Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb

    UID: 73

    Data Requested: Family income spent on basic need

    Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id

    Date Acquired: Map copied on May 10, 2022

    Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6

    Tags: PENDING

  18. b

    Median housing affordability ratio (residence-based) - WMCA

    • cityobservatory.birmingham.gov.uk
    csv, excel, geojson +1
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median housing affordability ratio (residence-based) - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/median-housing-affordability-ratio-residence-based-wmca/
    Explore at:
    csv, json, excel, geojsonAvailable download formats
    Dataset updated
    Dec 3, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This is the median housing affordability ratio (residence-based) and is calculated by dividing house prices by gross annual earnings, based on the median of both house prices and earnings.

    This measure of affordability shows what the people who live in a given area earn in relation to that area's house prices, even if they work elsewhere. This measure does not consider that people may be getting higher earnings from working in other areas.

    A higher ratio indicates that on average, it is less affordable for a resident to purchase a house. Conversely, a lower ratio indicates higher affordability in a local authority.

    The earnings data are from the Annual Survey of Hours and Earnings which provides a snapshot of earnings at April in each year. Earnings relate to gross full-time individual earnings on a place of work basis. The house price statistics come from the House Price Statistics for Small Areas, which report the median and lower quartile price paid for residential property and refer to a 12-month period with April in the middle (year ending September).

    Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.

  19. y

    Madison, WI Housing Affordability Index

    • ycharts.com
    html
    Updated Aug 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Association of Realtors (2023). Madison, WI Housing Affordability Index [Dataset]. https://ycharts.com/indicators/madison_wi_housing_affordability_index
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 10, 2023
    Dataset provided by
    YCharts
    Authors
    National Association of Realtors
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Dec 31, 2009 - Dec 31, 2022
    Area covered
    Wisconsin, Madison
    Variables measured
    Madison, WI Housing Affordability Index
    Description

    View yearly updates and historical trends for Madison, WI Housing Affordability Index. Source: National Association of Realtors. Track economic data with …

  20. Housing Affordability Data System (HADS), 2004

    • icpsr.umich.edu
    • search.datacite.org
    ascii, delimited, sas +2
    Updated Oct 29, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vandenbroucke, David A. (2009). Housing Affordability Data System (HADS), 2004 [Dataset]. http://doi.org/10.3886/ICPSR25204.v1
    Explore at:
    spss, delimited, ascii, sas, stataAvailable download formats
    Dataset updated
    Oct 29, 2009
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Vandenbroucke, David A.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/25204/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/25204/terms

    Time period covered
    2004
    Area covered
    Hartford, United States, Cleveland, Missouri, Pennsylvania, Pittsburgh, Ohio, Washington, Connecticut, Oklahoma
    Description

    The Housing Affordability Data System (HADS) is a set of housing unit level datasets that measures the affordability of housing units and the housing cost burdens of households, relative to area median incomes, poverty level incomes, and Fair Market Rents. The purpose of these datasets is to provide housing analysts with consistent measures of affordability and burdens over a long period. The datasets are based on the American Housing Survey (AHS) national files from 1985 through 2005 and the metropolitan files for 2002 and 2004. Users can link records in HADS files to AHS records, allowing access to all of the AHS variables. Housing-level variables include information on the number of rooms in the housing unit, the year the unit was built, whether it was occupied or vacant, whether the unit was rented or owned, whether it was a single family or multiunit structure, the number of units in the building, the current market value of the unit, and measures of relative housing costs. The dataset also includes variables describing the number of people living in the household, household income, and the type of residential area (e.g., urban or suburban).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Lower quartile house price (affordability ratios) - WMCA [Dataset]. https://cityobservatory.birmingham.gov.uk/explore/dataset/lower-quartile-house-price-affordability-ratios-wmca/

Lower quartile house price (affordability ratios) - WMCA

Explore at:
csv, excel, geojson, jsonAvailable download formats
Dataset updated
Dec 3, 2025
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Description

This is the unadjusted lower quartile house priced for residential property sales (transactions) in the area for a 12 month period with April in the middle (year-ending September). These figures have been produced by the ONS (Office for National Statistics) using the Land Registry (LR) Price Paid data on residential dwelling transactions.

The LR Price Paid data are comprehensive in that they capture changes of ownership for individual residential properties which have sold for full market value and covers both cash sales and those involving a mortgage.

The lower quartile is the value determined by putting all the house sales for a given year, area and type in order of price and then selecting the price of the house sale which falls three quarters of the way down the list, such that 75Percentage of transactions lie above and 25Percentage lie below that value. These are particularly useful for assessing housing affordability when viewed alongside average and lower quartile income for given areas.

Note that a transaction occurs when a change of freeholder or leaseholder takes place regardless of the amount of money involved and a property can transact more than once in the time period.

The LR records the actual price for which the property changed hands. This will usually be an accurate reflection of the market value for the individual property, but it is not always the case. In order to generate statistics that more accurately reflect market values, the LR has excluded records of houses that were not sold at market value from the dataset. The remaining data are considered a good reflection of market values at the time of the transaction. For full details of exclusions and more information on the methodology used to produce these statistics please see http://www.ons.gov.uk/peoplepopulationandcommunity/housing/qmis/housepricestatisticsforsmallareasqmi

The LR Price Paid data are not adjusted to reflect the mix of houses in a given area. Fluctuations in the types of house that are sold in that area can cause differences between the lower quartile transactional value of houses and the overall market value of houses.

If, for a given year, for house type and area there were fewer than 5 sales records in the LR Price Paid data, the house price statistics are not reported." Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.

Search
Clear search
Close search
Google apps
Main menu