53 datasets found
  1. T

    Dow | DOW - PE Price to Earnings

    • tradingeconomics.com
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Dow | DOW - PE Price to Earnings [Dataset]. https://tradingeconomics.com/dow:us:pe
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 3, 2025
    Area covered
    United States
    Description

    Dow reported $123.1 in PE Price to Earnings for its fiscal quarter ending in June of 2025. Data for Dow | DOW - PE Price to Earnings including historical, tables and charts were last updated by Trading Economics this last December in 2025.

  2. y

    S&P 500 P/E Ratio

    • ycharts.com
    html
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 P/E Ratio [Dataset]. https://ycharts.com/indicators/sp_500_pe_ratio
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Dec 31, 1988 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 P/E Ratio
    Description

    View quarterly updates and historical trends for S&P 500 P/E Ratio. from United States. Source: Standard and Poor's. Track economic data with YCharts anal…

  3. Average price-to-earnings ratio of stocks on the TSE 2022-2024, by market...

    • statista.com
    Updated Jan 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average price-to-earnings ratio of stocks on the TSE 2022-2024, by market division [Dataset]. https://www.statista.com/statistics/1537827/japan-tokyo-stock-exchange-average-price-to-earnings-ratio-of-stocks/
    Explore at:
    Dataset updated
    Jan 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    In 2024, the average price-to-earnings (P/E) ratio of stocks on the Prime Market of the Tokyo Stock Exchange (TSE) in Japan was **. The average P/E ratio of stocks on the Standard Market was ****.

  4. y

    S&P 500 P/E Ratio Forward Estimate

    • ycharts.com
    html
    Updated Nov 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 P/E Ratio Forward Estimate [Dataset]. https://ycharts.com/indicators/sp_500_pe_ratio_forward_estimate
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 2021 - Dec 31, 2026
    Area covered
    United States
    Variables measured
    S&P 500 P/E Ratio Forward Estimate
    Description

    View quarterly updates and historical trends for S&P 500 P/E Ratio Forward Estimate. from United States. Source: Standard and Poor's. Track economic data …

  5. ESG Ratings and Stock Data for Dow 30 Companies

    • kaggle.com
    zip
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Kirschnick Duffy (2024). ESG Ratings and Stock Data for Dow 30 Companies [Dataset]. https://www.kaggle.com/datasets/jenniferaduffy/esg-ratings-and-stock-data-for-dow-30-companies
    Explore at:
    zip(6657 bytes)Available download formats
    Dataset updated
    Jul 15, 2024
    Authors
    Jennifer Kirschnick Duffy
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    ESG data is used as a basis for sound investment and financial decisions. It includes metrics related to Environmental-Social-Governance topics. The data is used to measure the progress of companies (and governments) towards sustainability goals such as greenhouse gas emissions, human rights, and board ethics to name just a few.

    **The most successful companies use ESG as a key component of their business strategies. **Why? It can increase access to capital, help with efficiencies and innovation, improve talent acquisition and retention,and ensure compliance with regulations.

    What is the relation of ESG to stock market data? ESG performance is used by analysts, financial institutions, investors, and more to identify how risky an investment might be. Companies with low ESG scores compared to their industry peers are increasingly considered to be riskier investments.

    This dataset includes ESG scores from 3 well-known providers: MSCI, S&P Global, and Sustainalytics. It also includes scores from a company called ESGAnalytics.io that uses AI to detect ESG "signals" from press releases, media, etc. and then produces a real-time ESG score based on that "sentiment analysis." The ESG scores from the other 3 providers are generally updated annually.

    The datasets also include key ratios used to analyze a stock's value: Price-to-book (P/B), price-to-earnings (P/E), Price-to-earnings-growth (PEG), and debt-to-equity. The stock market data was extracted from Finazon.io and Yahoo Finance the last week of June 2024.

    **Similar datasets, including datasets for S&P 500 companies and for all 11 GICS (Global Industry Classification Standard) sectors are available at esgdatashop.io. **

  6. I

    India P/E ratio

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India P/E ratio [Dataset]. https://www.ceicdata.com/en/indicator/india/pe-ratio
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 14, 2025 - Dec 1, 2025
    Area covered
    India
    Description

    Key information about India P/E ratio

    • India SENSEX recorded a daily P/E ratio of 23.360 on 02 Dec 2025, compared with 23.380 from the previous day.
    • India SENSEX P/E ratio is updated daily, with historical data available from Dec 1988 to Dec 2025.
    • The P/E ratio reached an all-time high of 36.210 in Feb 2021 and a record low of 15.670 in Mar 2020.
    • BSE Limited provides daily P/E Ratio.

    In the latest reports, Sensitive 30 (Sensex) closed at 85,706.670 points in Nov 2025.

  7. Dow Jones Industrial Average Index Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Oct 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Dow Jones Industrial Average Index Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/dow-jones-industrial-average-index_25.html
    Explore at:
    Dataset updated
    Oct 25, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Industrial Average Index Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. y

    S&P 500 Shiller CAPE Ratio

    • ycharts.com
    html
    Updated Nov 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Shiller (2025). S&P 500 Shiller CAPE Ratio [Dataset]. https://ycharts.com/indicators/cyclically_adjusted_pe_ratio
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 11, 2025
    Dataset provided by
    YCharts
    Authors
    Robert Shiller
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 31, 1881 - Nov 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Shiller CAPE Ratio
    Description

    View monthly updates and historical trends for S&P 500 Shiller CAPE Ratio. from United States. Source: Robert Shiller. Track economic data with YCharts an…

  10. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  11. H

    Hong Kong SAR, China P/E ratio

    • ceicdata.com
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Hong Kong SAR, China P/E ratio [Dataset]. https://www.ceicdata.com/en/indicator/hong-kong/pe-ratio
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 10, 2025 - Mar 25, 2025
    Area covered
    Hong Kong
    Description

    Key information about Hong Kong SAR (China) P/E ratio

    • Hong Kong SAR (China) Hang Seng recorded a daily P/E ratio of 11.950 on 26 Mar 2025, compared with 12.200 from the previous day.
    • Hong Kong SAR (China) Hang Seng P/E ratio is updated daily, with historical data available from Apr 2000 to Mar 2025.
    • The P/E ratio reached an all-time high of 18.400 in Nov 2010 and a record low of 7.450 in Feb 2016.
    • Hang Seng Indexes Company Limited provides daily P/E Ratio.

    In the latest reports, Hang Seng closed at 22,941.320 points in Feb 2025.

  12. Is the Dow Jones U.S. Select Investment Services Index Poised for Growth?...

    • kappasignal.com
    Updated Nov 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Is the Dow Jones U.S. Select Investment Services Index Poised for Growth? (Forecast) [Dataset]. https://www.kappasignal.com/2024/07/is-dow-jones-us-select-investment.html
    Explore at:
    Dataset updated
    Nov 24, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the Dow Jones U.S. Select Investment Services Index Poised for Growth?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Dow Jones New Zealand: A Market on the Rise? (Forecast)

    • kappasignal.com
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones New Zealand: A Market on the Rise? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-new-zealand-market-on-rise.html
    Explore at:
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    New Zealand
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones New Zealand: A Market on the Rise?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Financial Pulse Check: Dow Jones U.S. Financials (Forecast)

    • kappasignal.com
    Updated Apr 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Financial Pulse Check: Dow Jones U.S. Financials (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/financial-pulse-check-dow-jones-us.html
    Explore at:
    Dataset updated
    Apr 20, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Financial Pulse Check: Dow Jones U.S. Financials

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Dow Jones North America Select Junior Oil Index: A Beacon of Recovery?...

    • kappasignal.com
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones North America Select Junior Oil Index: A Beacon of Recovery? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-north-america-select-junior.html
    Explore at:
    Dataset updated
    Apr 3, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Area covered
    North America
    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones North America Select Junior Oil Index: A Beacon of Recovery?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Data from: Can stock prices be predicted? (Dow Jones Industrial Average...

    • kappasignal.com
    Updated Oct 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can stock prices be predicted? (Dow Jones Industrial Average Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/can-stock-prices-be-predicted-dow-jones.html
    Explore at:
    Dataset updated
    Oct 22, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can stock prices be predicted? (Dow Jones Industrial Average Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. y

    S&P 500 Earnings Per Share

    • ycharts.com
    html
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Standard and Poor's (2025). S&P 500 Earnings Per Share [Dataset]. https://ycharts.com/indicators/sp_500_eps
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset provided by
    YCharts
    Authors
    Standard and Poor's
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Mar 31, 1988 - Jun 30, 2025
    Area covered
    United States
    Variables measured
    S&P 500 Earnings Per Share
    Description

    View quarterly updates and historical trends for S&P 500 Earnings Per Share. from United States. Source: Standard and Poor's. Track economic data with YCh…

  18. Top Tech Companies Stock Price

    • kaggle.com
    zip
    Updated Nov 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomas Mantero (2020). Top Tech Companies Stock Price [Dataset]. https://www.kaggle.com/tomasmantero/top-tech-companies-stock-price
    Explore at:
    zip(7295960 bytes)Available download formats
    Dataset updated
    Nov 24, 2020
    Authors
    Tomas Mantero
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In this dataset you can find the Top 100 companies in the technology sector. You can also find 5 of the most important and used indices in the financial market as well as a list of all the companies in the S&P 500 index and in the technology sector.

    The Global Industry Classification Standard also known as GICS is the primary financial industry standard for defining sector classifications. The Global Industry Classification Standard was developed by index providers MSCI and Standard and Poor’s. Its hierarchy begins with 11 sectors which can be further delineated to 24 industry groups, 69 industries, and 158 sub-industries.

    You can read the definition of each sector here.

    The 11 broad GICS sectors commonly used for sector breakdown reporting include the following: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information Technology, Telecommunication Services, Utilities and Real Estate.

    In this case we will focuse in the Technology Sector. You can see all the sectors and industry groups here.

    To determine which companies, correspond to the technology sector, we use Yahoo Finance, where we rank the companies according to their “Market Cap”. After having the list of the Top 100 best valued companies in the sector, we proceeded to download the historical data of each of the companies using the NASDAQ website.

    Regarding to the indices, we searched various sources to find out which were the most used and determined that the 5 most frequently used indices are: Dow Jones Industrial Average (DJI), S&P 500 (SPX), NASDAQ Composite (IXIC), Wilshire 5000 Total Market Inde (W5000) and to specifically view the technology sector SPDR Select Sector Fund - Technology (XLK). Historical data for these indices was also obtained from the NASDQ website.

    Content

    In total there are 107 files in csv format. They are composed as follows:

    • 100 files contain the historical data of tech companies.
    • 5 files contain the historical data of the most used indices.
    • 1 file contain the list of all the companies in the S&P 500 index.
    • 1 file contain the list of all the companies in the technology sector.

    Column Description

    Every company and index file has the same structure with the same columns:

    Date: It is the date on which the prices were recorded. High: Is the highest price at which a stock traded during the course of the trading day. Low: Is the lowest price at which a stock traded during the course of the trading day. Open: Is the price at which a stock started trading when the opening bell rang. Close: Is the last price at which a stock trades during a regular trading session. Volume: Is the number of shares that changed hands during a given day. Adj Close: The adjusted closing price factors in corporate actions, such as stock splits, dividends, and rights offerings.

    The two other files have different columns names:

    List of S&P 500 companies

    Symbol: Ticker symbol of the company. Name: Name of the company. Sector: The sector to which the company belongs.

    Technology Sector Companies List

    Symbol: Ticker symbol of the company. Name: Name of the company. Price: Current price at which a stock can be purchased or sold. (11/24/20) Change: Net change is the difference between closing prices from one day to the next. % Change: Is the difference between closing prices from one day to the next in percentage. Volume: Is the number of shares that changed hands during a given day. Avg Vol: Is the daily average of the cumulative trading volume during the last three months. Market Cap (Billions): Is the total value of a company’s shares outstanding at a given moment in time. It is calculated by multiplying the number of shares outstanding by the price of a single share. PE Ratio: Is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.

    Acknowledgements

    SEC EDGAR | Company Filings NASDAQ | Historical Quotes Yahoo Finance | Technology Sector Wikipedia | List of S&P 500 companies S&P Dow Jones Indices | S&P 500 [S&P Dow Jones Indices | DJI](https://www.spglobal.com/spdji/en/i...

  19. Dow Jones Tech Index Forecast: Mixed Signals Ahead (Forecast)

    • kappasignal.com
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Dow Jones Tech Index Forecast: Mixed Signals Ahead (Forecast) [Dataset]. https://www.kappasignal.com/2025/01/dow-jones-tech-index-forecast-mixed.html
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Tech Index Forecast: Mixed Signals Ahead

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. C

    Chile Equity Market Index

    • ceicdata.com
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Chile Equity Market Index [Dataset]. https://www.ceicdata.com/en/indicator/chile/equity-market-index
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    Chile
    Variables measured
    Securities Exchange Index
    Description

    Key information about Chile IPSA

    • Chile IPSA closed at 7,332.1 points in Feb 2025, compared with 7,199.6 points at the previous month end
    • Chile Equity Market Index: Month End: Santiago Stock Exchange: IPSA data is updated monthly, available from Jan 2003 to Feb 2025, with an average number of 4,023.4 points
    • The data reached an all-time high of 7,332.1 points in Feb 2025 and a record low of 1,002.0 points in Jan 2003

    Santiago Stock Exchange provides daily data on several major stock market indices, but the IPSA index is the one most closely monitored by analysts. Co-branding between S & P Dow Jones Indices (S & P DJI) and Santiago Stock Exchange has been effective as of August 6, 2018. Calculation and maintenance of the index will be taken over by S & P pursuant to the Operating Agreement and Index Licensing signed by both parties in August 2016. Historical values and components of the index will not be modified to maintain continuity.


    Further information about Chile IPSA

    • In the latest reports, Santiago Stock Exchange recorded a monthly P/E ratio of 12.6 in Jan 2025

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS, Dow | DOW - PE Price to Earnings [Dataset]. https://tradingeconomics.com/dow:us:pe

Dow | DOW - PE Price to Earnings

Explore at:
json, excel, xml, csvAvailable download formats
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 1, 2000 - Dec 3, 2025
Area covered
United States
Description

Dow reported $123.1 in PE Price to Earnings for its fiscal quarter ending in June of 2025. Data for Dow | DOW - PE Price to Earnings including historical, tables and charts were last updated by Trading Economics this last December in 2025.

Search
Clear search
Close search
Google apps
Main menu