CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data product provides three Excel file spreadsheet models that use futures prices to forecast the U.S. season-average price received and the implied CCP for three major field crops (corn, soybeans, and wheat).
Farmers and policymakers are interested in the level of counter-cyclical payments (CCPs) provided by the 2008 Farm Act to producers of selected commodities. CCPs are based on the season-average price received by farmers. (For more information on CCPs, see the ERS 2008 Farm Bill Side-By-Side, Title I: Commodity Programs.)
This data product provides three Excel spreadsheet models that use futures prices to forecast the U.S. season-average price received and the implied CCP for three major field crops (corn, soybeans, and wheat). Users can view the model forecasts or create their own forecast by inserting different values for futures prices, basis values, or marketing weights. Example computations and data are provided on the Documentation page.
For each of the three major U.S. field crops, the Excel spreadsheet model computes a forecast for:
Note: the model forecasts are not official USDA forecasts. See USDA's World Agricultural Supply and Demand Estimates for official USDA season-average price forecasts. See USDA's Farm Service Agency information for official USDA CCP rates.
https://meyka.com/licensehttps://meyka.com/license
AI-powered price forecasts for FSHPR stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Natural gas account for 1/4 of the global demand and roughly 1/3 of the US energy demand. After oil, Natural gas is the most dominate sort of energy. So, being about to improve natural gas demand prediction is extremely valuable.
Therefore, this project aims to predict the demand of Natural Gas in the US by combining a wide range of datasets including the time series of major Natural Gas Prices including US Henry Hub. Data comes from U.S. Energy Information Administration. Need to forecast the price of natural gas based on the historical data.
Data
Dataset contains Daily prices of Natural gas, starting from January 1997 to current year. Prices are in nominal dollars.
Track TMT price trends with monthly, quarterly, and yearly data for 2024-2025. Get expert forecasts, historical charts, and regional insights to plan your sourcing.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States EIA Forecast: Retail Price incl Tax: Heating Oil data was reported at 305.688 0.01 USD/gal in Dec 2019. This records an increase from the previous number of 300.541 0.01 USD/gal for Nov 2019. United States EIA Forecast: Retail Price incl Tax: Heating Oil data is updated monthly, averaging 281.432 0.01 USD/gal from Mar 2016 (Median) to Dec 2019, with 46 observations. The data reached an all-time high of 312.013 0.01 USD/gal in Jan 2019 and a record low of 196.745 0.01 USD/gal in Apr 2016. United States EIA Forecast: Retail Price incl Tax: Heating Oil data remains active status in CEIC and is reported by Energy Information Administration. The data is categorized under Global Database’s USA – Table US.P003: Energy Price: Forecast: Energy Information Administration.
https://meyka.com/licensehttps://meyka.com/license
AI-powered price forecasts for RRSFF stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.
https://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy
Polycarbonate prices (CIF China) showed mixed YoY changes in late 2024 (Oct -3%, Nov -1%, Dec +3%). Global prices in 2025 may remain under pressure.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Based on professional technical analysis and AI models, deliver precise price‑prediction data for Circle xStock on 2025-07-23. Includes multi‑scenario analysis (bullish, baseline, bearish), risk assessment, technical‑indicator insights and market‑trend forecasts to help investors make informed trading decisions and craft sound investment strategies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advantages and disadvantages of conventional forecasting methods.
In 2022, the average end-use electricity price in the United States stood at around 12.2 U.S. cents per kilowatt-hour. This figure is projected to decrease in the coming three decades, to reach some 11 U.S. cents per kilowatt-hour by 2050.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Gasoline fell to 2.17 USD/Gal on July 31, 2025, down 1.86% from the previous day. Over the past month, Gasoline's price has risen 3.64%, but it is still 10.00% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gasoline - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://meyka.com/licensehttps://meyka.com/license
AI-powered price forecasts for DFMTF stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
European Union EU27: DG ECFIN Forecast: GDP: Imports: Services data was reported at 2,855.810 EUR bn in 2026. This records an increase from the previous number of 2,732.896 EUR bn for 2025. European Union EU27: DG ECFIN Forecast: GDP: Imports: Services data is updated yearly, averaging 1,027.386 EUR bn from Dec 1995 (Median) to 2026, with 32 observations. The data reached an all-time high of 2,855.810 EUR bn in 2026 and a record low of 378.185 EUR bn in 1995. European Union EU27: DG ECFIN Forecast: GDP: Imports: Services data remains active status in CEIC and is reported by European Commission's Directorate-General for Economic and Financial Affairs. The data is categorized under Global Database’s European Union – Table EU.DG ECFIN.AMECO: GDP: by Expenditure: Current Price: Forecast.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://meyka.com/licensehttps://meyka.com/license
AI-powered price forecasts for CJPRY stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data product provides three Excel file spreadsheet models that use futures prices to forecast the U.S. season-average price received and the implied CCP for three major field crops (corn, soybeans, and wheat).
Farmers and policymakers are interested in the level of counter-cyclical payments (CCPs) provided by the 2008 Farm Act to producers of selected commodities. CCPs are based on the season-average price received by farmers. (For more information on CCPs, see the ERS 2008 Farm Bill Side-By-Side, Title I: Commodity Programs.)
This data product provides three Excel spreadsheet models that use futures prices to forecast the U.S. season-average price received and the implied CCP for three major field crops (corn, soybeans, and wheat). Users can view the model forecasts or create their own forecast by inserting different values for futures prices, basis values, or marketing weights. Example computations and data are provided on the Documentation page.
For each of the three major U.S. field crops, the Excel spreadsheet model computes a forecast for:
Note: the model forecasts are not official USDA forecasts. See USDA's World Agricultural Supply and Demand Estimates for official USDA season-average price forecasts. See USDA's Farm Service Agency information for official USDA CCP rates.