100+ datasets found
  1. Stock Market: Historical Data of Top 10 Companies

    • kaggle.com
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies
    Explore at:
    zip(486977 bytes)Available download formats
    Dataset updated
    Jul 18, 2023
    Authors
    Khushi Pitroda
    Description

    The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

    Data Analysis Tasks:

    1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

    2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

    3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

    4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

    5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

    Machine Learning Tasks:

    1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

    2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

    3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

    4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

    5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

    The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

    It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

    This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

    By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

    Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

    In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

  2. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  3. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  4. Historical Stock Prices

    • kaggle.com
    Updated May 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sherry (2023). Historical Stock Prices [Dataset]. https://www.kaggle.com/datasets/sherrytp/stock-prices-5y
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 9, 2023
    Dataset provided by
    Kaggle
    Authors
    Sherry
    License

    https://www.reddit.com/wiki/apihttps://www.reddit.com/wiki/api

    Description

    The datasets contain historical stock or futures prices for my personal projects and learning purposes. The equity classification and data source are mainly from Yahoo Finance, Google Finance, or Nasdaq with API access. So you can practice EAD or predictive analysis on your own and assume the dataset structure will not change so much when used in the same platform later. In short, please do not contact me privately for recently updated data. Below is the breakdown for every file, as all came from different sources.

    Stock prices

    • StockScreener.xlsm
    • all_stocks_5yr.csv
    • df_featured.csv

    Wiki futures

    • CHRIS_metadata.csv
    • metadata.csv
    • StockScreener.xlsm

    Sharadar

    • Sharadar_Equity_open.xlsx
  5. 9000+ Tickers of Stock Market Data (Full History)

    • kaggle.com
    zip
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jake wright (2024). 9000+ Tickers of Stock Market Data (Full History) [Dataset]. https://www.kaggle.com/datasets/jakewright/9000-tickers-of-stock-market-data-full-history
    Explore at:
    zip(1918054636 bytes)Available download formats
    Dataset updated
    Nov 13, 2024
    Authors
    jake wright
    Description

    Stock Market Data: 9,000+ Tickers (1962 - Present)

    Dataset Overview

    This dataset offers comprehensive historical stock market data covering over 9,000 tickers from 1962 to the present day. It includes essential daily trading information, making it suitable for various financial analyses, trend studies, and algorithmic trading model development.

    Columns

    • Date: The date of the recorded trading data.
    • Ticker: The stock symbol of the company.
    • Open: Opening price of the stock on the trading day.
    • High: Highest price reached during the trading day.
    • Low: Lowest price reached during the trading day.
    • Close: Closing price of the stock on the trading day.
    • Volume: The total number of shares traded during the day.
    • Dividends: Cash dividends issued on the date, if applicable.
    • Stock Splits: Stock split factor for the date, if any split occurred.

    Usage

    This dataset is ideal for: - Time-Series Analysis: Track stock price trends over time, examining daily, monthly, and yearly patterns across sectors. - Algorithmic Trading: Develop and backtest trading strategies using historical price movements and volume data. - Machine Learning Applications: Train models for stock price prediction, volatility forecasting, or portfolio optimization. - Quantitative Research: Perform event studies, analyze the impact of dividends and stock splits, and assess long-term investment strategies. - Comparative Analysis: Evaluate performance across industries or against broader market trends by analyzing multiple tickers in one dataset.

    This dataset serves as a robust resource for academic research, quantitative finance studies, and financial technology development.

  6. T

    Chart Industries | GTLS - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Chart Industries | GTLS - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/gtls:us
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Jun 13, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 3, 2025
    Area covered
    United States
    Description

    Chart Industries stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  7. T

    Nexstar Broadcasting | NXST - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). Nexstar Broadcasting | NXST - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/nxst:us
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Sep 21, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    Nexstar Broadcasting stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  8. Google Stock Price Data (2020-2025) | GOOGL

    • kaggle.com
    zip
    Updated Feb 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M. Zohaib Zeeshan (2025). Google Stock Price Data (2020-2025) | GOOGL [Dataset]. https://www.kaggle.com/datasets/mzohaibzeeshan/google-stock-price-data-2020-2025-googl
    Explore at:
    zip(36400 bytes)Available download formats
    Dataset updated
    Feb 16, 2025
    Authors
    M. Zohaib Zeeshan
    Description

    About Dataset:

    This dataset includes the daily historical stock prices for Google (GOOGL) spanning from 2020 to 2025. It features essential financial metrics such as opening and closing prices, daily highs and lows, adjusted close prices, and trading volumes. The information offers valuable insights into the stock's performance over a five-year timeframe.

    Column Descriptions:

    • Price: Date of the stock data (needs cleaning as the first two rows are headers).
    • Adj Close: Adjusted closing price, accounting for events like dividends and splits.
    • Close: Closing price of the stock at the end of the trading day.
    • High: Highest price of the stock during the trading day.
    • Low: Lowest price of the stock during the trading day.
    • Open: Opening price of the stock at the start of the trading day.
    • Volume: Number of shares traded during the day.

    What Can You Achieve and Apply on This Data:

    • Time Series Analysis: Examine trends and patterns over time.
    • Stock Price Prediction: Use machine learning models to forecast future prices.
    • Volatility Analysis: Measure the stock's price fluctuations.
    • Technical Analysis: Calculate indicators like moving averages, RSI, and MACD.
    • Correlation Analysis: Investigate the relationship between volume and price changes.
    • Investment Strategy Backtesting: Test trading strategies like moving average crossovers.

    Note: 1. This data is scraped from Yahoo Finance by me using python code. 2. Some of the About Data is generated from AI, but verified from me.

  9. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  10. T

    Indonesia Stock Market (JCI) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Indonesia Stock Market (JCI) Data [Dataset]. https://tradingeconomics.com/indonesia/stock-market
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 6, 1990 - Dec 2, 2025
    Area covered
    Indonesia
    Description

    Indonesia's main stock market index, the JCI, rose to 8617 points on December 2, 2025, gaining 0.80% from the previous session. Over the past month, the index has climbed 4.13% and is up 19.75% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on December of 2025.

  11. T

    Match | MTCH - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). Match | MTCH - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/mtch:us
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    May 29, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    Match stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  12. T

    DIA - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). DIA - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/dia:sm
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Nov 29, 2025
    Area covered
    Spain
    Description

    DIA stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  13. Monthly development Dow Jones Industrial Average Index 2018-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Monthly development Dow Jones Industrial Average Index 2018-2025 [Dataset]. https://www.statista.com/statistics/261690/monthly-performance-of-djia-index/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jun 2025
    Area covered
    United States
    Description

    The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.

  14. c

    S&P 500 stock Dataset

    • cubig.ai
    zip
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). S&P 500 stock Dataset [Dataset]. https://cubig.ai/store/products/359/sp-500-stock-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The S&P 500 stock data is a tabular stock market dataset of daily stock price information (market, high price, low price, closing price, trading volume, etc.) for the last five years (the latest data is until February 2018) of all companies in the S&P 500 index.

    2) Data Utilization (1) S&P 500 stock data has characteristics that: • Each row contains key stock metrics such as date, open, high, low, close, volume, and stock ticker name. • Data is provided as individual stock files and all stock integrated files, so it can be used for various analysis purposes. (2) S&P 500 stock data can be used to: • Stock Price Forecasting and Investment Strategy Development: Using historical stock price data, a variety of investment strategies and forecasting models can be developed, including time series forecasting, volatility analysis, and moving averages. • Market Trends and Corporate Comparison Analysis: It can be used to visualize stock price fluctuations across stocks, compare performance between stocks, analyze market trends, optimize portfolios, and more.

  15. APPLE STOCK PRICE HISTORY DATASET

    • kaggle.com
    zip
    Updated Sep 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shamim Hasan (2025). APPLE STOCK PRICE HISTORY DATASET [Dataset]. https://www.kaggle.com/datasets/shamimhasan8/apple-stock-price-history-dataset
    Explore at:
    zip(417767 bytes)Available download formats
    Dataset updated
    Sep 28, 2025
    Authors
    Shamim Hasan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    “The people who are crazy enough to think they can predict the market... are the ones who do.”

    Here’s to the crazy ones—the data dreamers, the analysts, the visionaries who believe that a handful of numbers can reveal the DNA of innovation. This dataset is more than a collection of Apple Inc.’s historical stock prices; it’s a chronicle of invention, perseverance, and thinking differently.

    What’s Inside

    • Time Span: Daily stock price data for Apple Inc. over multiple years
    • Features:
      • Date: The day of the record
      • Open: Price at market open
      • High: Highest price of the day
      • Low: Lowest price of the day
      • Close: Price at market close
      • Volume: Number of shares traded
    • Format: CSV, clean and ready for analysis

    Why This Matters

    Apple is not just a company, it’s a movement. Its stock price reflects not only financial performance, but the world’s response to innovation—launches, leadership changes, economic cycles, and the occasional “one more thing.”

    Possibilities

    • Visualize long-term growth and volatility
    • Model trends, moving averages, or momentum
    • Forecast future prices with machine learning
    • Detect the impact of major product launches or events
    • Explore relationships between volume and price action

    Inspiration

    As you explore this data, don’t just look for patterns—look for stories. See how moments of genius and risk-taking ripple through the numbers. Use this dataset to inspire your own creativity, your own analysis, your own ‘insanely great’ discoveries.

    Whether you’re here to build a predictive model, craft beautiful visualizations, or simply marvel at the journey, remember:
    The people who are crazy enough to think they can change the world with data… are the ones who do.

  16. T

    Revelyst | VSTO - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Revelyst | VSTO - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/vsto:us
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jun 18, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    Revelyst stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  17. Coca-Cola Stock Data: Over 100 Years of Trading

    • kaggle.com
    zip
    Updated Sep 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Atif Latif (2025). Coca-Cola Stock Data: Over 100 Years of Trading [Dataset]. https://www.kaggle.com/datasets/muhammadatiflatif/coca-cola-stock-data-over-100-years-of-trading
    Explore at:
    zip(1834170 bytes)Available download formats
    Dataset updated
    Sep 14, 2025
    Authors
    Muhammad Atif Latif
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    🥤 Coca-Cola (KO) Stock Price History (1919–2025)

    This dataset provides daily historical stock price data for The Coca-Cola Company (ticker: KO) from January 2, 1962 to April 6, 2025. It captures Coca-Cola’s stock performance through decades of economic cycles, technological shifts, and global events — making it a rich resource for time-series analysis, investment research, and machine learning projects.

    📂 Dataset Overview

    Column NameDescription
    dateDate of trading
    openOpening price of the day
    highHighest price of the day
    lowLowest price of the day
    closeClosing price of the day
    adj_closeAdjusted closing price (accounts for splits/dividends)
    volumeTotal shares traded on the day

    🧮 Dataset Dimensions

    • Total Rows: 15,922
    • Total Columns: 7
    • Missing Values: None ✅
    • Date Range: 1962-01-02 to 2025-04-06

    📊 Summary Statistics

    • Highest Close Price: $73.18
    • Lowest Close Price: $0.19
    • Max Volume: 124M+ shares
    • Average Close Price: ~$18.45
    • Adjusted Prices: Range from $0.03 to $73.18

    💡 Use Cases

    • Time-series forecasting with LSTM, ARIMA, Prophet
    • Volatility analysis and pattern detection
    • Financial data visualization across decades
    • Backtesting trading strategies on long-term data
    • Comparing adjusted vs. raw stock prices

    🧠 Project Ideas

    • Predict future stock prices using ML models
    • Visualize price trends during major economic events
    • Analyze the effect of dividends and stock splits
    • Build a financial dashboard using Plotly or Streamlit

    📎 License

    This dataset is for educational and research purposes only. For financial trading or commercial use, always consult a licensed data provider.

    🙌 Acknowledgment

    This dataset was compiled to support learning in data science, finance, and AI fields. Feel free to use it in your projects — and if you do, share your work! 📬 Contect info:

    You can contect me for more data sets any type of data you want.

    -E_mail

    -Linkdin

    -Kaggle

    -X

    -Github

  18. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Dec 2, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.

  19. T

    United States Stock Market Index (US5000) - Index Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). United States Stock Market Index (US5000) - Index Price | Live Quote | Historical Chart | Trading Economics [Dataset]. https://tradingeconomics.com/w5000:ind
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    May 6, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 2, 2025
    Area covered
    United States
    Description

    Prices for United States Stock Market Index (US5000) including live quotes, historical charts and news. United States Stock Market Index (US5000) was last updated by Trading Economics this December 2 of 2025.

  20. Massive Yahoo Finance Dataset

    • kaggle.com
    zip
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sherry Thomas (2023). Massive Yahoo Finance Dataset [Dataset]. https://www.kaggle.com/datasets/iveeaten3223times/massive-yahoo-finance-dataset
    Explore at:
    zip(23885678 bytes)Available download formats
    Dataset updated
    Nov 29, 2023
    Authors
    Sherry Thomas
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Title: Stock Prices of 500 Biggest Companies by Market Cap (Last 5 Years)

    Description: This dataset comprises historical stock market data extracted from Yahoo Finance, spanning a period of five years. It includes daily records of stock performance metrics for the top 500 companies based on market capitalization.

    Attributes: 1. Date: The date corresponding to the recorded stock market data. 2. Open: The opening price of the stock on a given date. 3. High: The highest price of the stock reached during the trading day. 4. Low: The lowest price of the stock observed during the trading day. 5. Close: The closing price of the stock on a specific date. 6. Volume: The volume of shares traded on the given date. 7. Dividends: Any dividend payments made by the company on that date (if applicable). 8. Stock Splits: Information regarding any stock splits occurring on that date. 9. Company: Ticker symbol or identifier representing the respective company.

    Usefulness: - Investors and analysts can leverage this dataset to conduct various analyses such as trend analysis, volatility assessment, and predictive modeling. - Researchers can explore correlations between stock prices of different companies, sector-wise performance, and market trends over the specified duration. - Machine learning enthusiasts can employ this dataset for developing predictive models for stock price forecasting or anomaly detection.

    Note: Prior to using this dataset, it's recommended to perform data cleaning, handling missing values, and verifying the consistency of data across companies and time periods.

    License: The dataset is sourced from Yahoo Finance and is provided for analytical purposes. Refer to Yahoo Finance's terms of use for further details on data usage and licensing.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies
Organization logo

Stock Market: Historical Data of Top 10 Companies

Unveiling the Rise and Fall of Tech Titans - A Journey Through Stocks

Explore at:
zip(486977 bytes)Available download formats
Dataset updated
Jul 18, 2023
Authors
Khushi Pitroda
Description

The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

Data Analysis Tasks:

1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

Machine Learning Tasks:

1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

Search
Clear search
Close search
Google apps
Main menu