100+ datasets found
  1. g

    Price index figures on the production of buildings, 2000 - 2016 | gimi9.com

    • gimi9.com
    Updated May 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Price index figures on the production of buildings, 2000 - 2016 | gimi9.com [Dataset]. https://gimi9.com/dataset/nl_4507-price-index-figures-on-the-production-of-buildings--2000---2016/
    Explore at:
    Dataset updated
    May 3, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Index figures on production prices of dwellings and other buildings reflect the relation between the output value and the output volume and can be used to convert the value of construction output from current prices to fixed prices. The output price index is derived from the series "New dwellings; output indices 2000=100". From the 2nd quarter 2009 on, the figures of the series 2005 = 100 are used and linked to the series 2000 = 100. Statistics Netherlands publishes data on the value of construction output. The volume of construction output, however, cannot be deduced from the value, which is subject to price changes. The price index on the building costs of new dwellings eliminates the effect of price changes. The price index on construction output is calculated by distributing the value of the output (current prices) over the quarters essential to the price setting of the building project. Subsequently, the quarterly output is calculated in fixed prices by using the price index on the building costs of new dwellings. The index figure of the output price is the sum of the current prices divided by the sum of the fixed prices (*100). Possibilities for selection: - Total construction - Total construction of new dwellings/buildings - New dwellings - New buildings in the private sector - New buildings in the non-commercial sector - Total other buildings - Other dwellings - Other buildings in the private sector - Other buildings in the non-commercial sector Data available from 1st quarter 2000 till 4th quarter 2016 Frequency: discontinued Status of the figures: The figures of 2016 are provisional. Since this table has been discontinued, the data will not become definitive. Changes as of January 29 2018 None, this table is discontinued. When will new figures become available? This table is succeeded by Production on buildings; price index 2015 = 100. See paragraph 3. Linking recommendation If you want to compile long-term series with linked price indices on production of buildings, you can link the figures on price level 1995 with the figures on price level 2000. For that, the percentage change from the 2nd quarter 2005 with the 1st quarter 2005 must be calculated, as the price index for the 1st quarter 2005 is the last figure published on price level 1995. This change must then be adjusted to the figures for the 1st quarter 2005 of the series 1995. The 2nd quarter index of the linked series is calculated by calculating the difference between the 1st quarter 2005 and the 2nd quarter 2005 according to the series on price level 2000 and multiplying this by the index for the 1st quarter 2005 according to the series on price level 1995. In the example: (119/120) x 148=147 (rounded). For the 3rd quarter 2005 the index is calculated analogously, where because of rounding problems the first quarter figures must be used for the link.

  2. Consumer Price Index 2024 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2025). Consumer Price Index 2024 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/732
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2024
    Area covered
    Gaza, Gaza Strip, West Bank, Palestine
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes and estimations of non-available items' prices: Under each category, a number of common items are used in Palestine to calculate the price levels and to represent the commodity within the commodity group. Of course, it is

  3. Price level index comparison 2022, by country

    • statista.com
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Price level index comparison 2022, by country [Dataset]. https://www.statista.com/statistics/426431/price-level-index-comparison-imf-and-world-bank-by-country/
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    As of 2022, Israel had the highest price level index among listed countries, amounting to 138, with 100 being the average of OECD countries. Switzerland and Iceland followed on the places behind. On the other hand, Turkey and India had the lowest price levels compared to the OECD average. This price index shows differences in price levels in different countries. Another very popular index indicating the value of money is the Big Mac index, showing how much a Big Mac costs in different countries. This list was also topped by Switzerland in 2023.

  4. Consumer Price Index 2019 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2021). Consumer Price Index 2019 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/704
    Explore at:
    Dataset updated
    Dec 26, 2021
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2019
    Area covered
    Gaza, Gaza Strip, West Bank
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. For example, for the CPI, the variation between its goods was very low, except in some cases such as banana, tomato, and cucumber goods that had a high coefficient of variation during 2019 due to the high oscillation in their prices. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes

  5. d

    Trade index - general index (chain index)

    • data.gov.tw
    csv
    Updated Aug 1, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept. of Statistics (2014). Trade index - general index (chain index) [Dataset]. https://data.gov.tw/en/datasets/8385
    Explore at:
    csvAvailable download formats
    Dataset updated
    Aug 1, 2014
    Dataset authored and provided by
    Dept. of Statistics
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Description

    Chain index: An index calculated based on the previous year as the base period and the weight. It includes price index, unit value index, quantity index, pure trade condition (export unit value index / import unit value index * 100), and income trade condition (pure trade condition x export quantity index / 100). Unit: Reference year is 110.

  6. F

    Value Added by Industry: Information (Chain-Type Price Index)

    • fred.stlouisfed.org
    json
    Updated Jun 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Value Added by Industry: Information (Chain-Type Price Index) [Dataset]. https://fred.stlouisfed.org/series/VAPII
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 26, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Value Added by Industry: Information (Chain-Type Price Index) (VAPII) from Q1 2005 to Q1 2025 about value added, information, chained, private industries, private, industry, price index, indexes, price, and USA.

  7. T

    United States S&P Case-Shiller 20-City Composite Home Price Index

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States S&P Case-Shiller 20-City Composite Home Price Index [Dataset]. https://tradingeconomics.com/united-states/case-shiller-home-price-index
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2000 - Jun 30, 2025
    Area covered
    United States
    Description

    Case Shiller Home Price Index in the United States decreased to 342.90 points in June from 343.04 points in May of 2025. This dataset provides the latest reported value for - United States S&P Case-Shiller Home Price Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. T

    United States Consumer Price Index (CPI)

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Consumer Price Index (CPI) [Dataset]. https://tradingeconomics.com/united-states/consumer-price-index-cpi
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - Jul 31, 2025
    Area covered
    United States
    Description

    Consumer Price Index CPI in the United States increased to 323.05 points in July from 322.56 points in June of 2025. This dataset provides the latest reported value for - United States Consumer Price Index (CPI) - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  9. D

    Dominican Republic Consumer Price Index (CPI), July, 2025 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). Dominican Republic Consumer Price Index (CPI), July, 2025 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Dominican-Republic/cpi/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1984 - Jul 31, 2025
    Area covered
    Dominican Republic
    Description

    Consumer Price Index (CPI) in Dominican Republic, July, 2025 The most recent value is 132.9548 index points as of July 2025, an increase compared to the previous value of 132.4552 index points. Historically, the average for Dominican Republic from January 1984 to July 2025 is 51.8674 index points. The minimum of 1.3794 index points was recorded in January 1984, while the maximum of 132.9548 index points was reached in July 2025. | TheGlobalEconomy.com

  10. I

    India Consumer Price Index (CPI), June, 2025 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). India Consumer Price Index (CPI), June, 2025 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/India/cpi/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2011 - Jun 30, 2025
    Area covered
    India
    Description

    Consumer Price Index (CPI) in India, June, 2025 The most recent value is 194.2 index points as of June 2025, an increase compared to the previous value of 193 index points. Historically, the average for India from January 2011 to June 2025 is 140.9592 index points. The minimum of 88.4 index points was recorded in February 2011, while the maximum of 196.8 index points was reached in October 2024. | TheGlobalEconomy.com

  11. U

    United States GDP: Intermediate Inputs (II): Quantity Index (QI): saar

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States GDP: Intermediate Inputs (II): Quantity Index (QI): saar [Dataset]. https://www.ceicdata.com/en/united-states/nipa-2013-gdp-by-industry-intermediate-inputs-seasonally-adjusted-at-annual-rates-quantity-index
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2015 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Gross Domestic Product
    Description

    GDP: Intermediate Inputs (II): Quantity Index (QI): saar data was reported at 128.550 2009=100 in Mar 2018. This records an increase from the previous number of 127.303 2009=100 for Dec 2017. GDP: Intermediate Inputs (II): Quantity Index (QI): saar data is updated quarterly, averaging 112.841 2009=100 from Mar 2005 (Median) to Mar 2018, with 53 observations. The data reached an all-time high of 128.550 2009=100 in Mar 2018 and a record low of 99.244 2009=100 in Jun 2009. GDP: Intermediate Inputs (II): Quantity Index (QI): saar data remains active status in CEIC and is reported by Bureau of Economic Analysis. The data is categorized under Global Database’s USA – Table US.A030: NIPA 2013: GDP by Industry: Intermediate Inputs: Seasonally Adjusted at Annual Rates: Quantity Index.

  12. Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025...

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025 [Dataset]. https://www.statista.com/statistics/1269643/s-p-500-esg-normal-index-comparison/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 29, 2022 - Apr 29, 2025
    Area covered
    Worldwide
    Description

    Until the fourth quarter of 2023, the S&P 500 and the S&P 500 ESG index exhibited similar performance, both indexes were weighted to similar industries as the S&P 500 followed the leading 500 companies in the United States. Throughout 2024, the S&P 500 ESG index steadily outperformed the S&P 500 by ***** points on average. During the coronavirus pandemic, the technology sector was one of the best-performing sectors in the market. The major differences between the two indexes were the S&P 500 ESG index was skewed towards firms with higher environmental, social, and governance (ESG) scores and had a higher concentration of technology securities than the S&P 500 index. What is a market capitalization index? Both the S&P 500 and the S&P 500 ESG are market capitalization indexes, meaning the individual components (such as stocks and other securities) weighted to the indexes influence the overall value. Market trends such as inflation, interest rates, and international issues like the coronavirus pandemic and the popularity of ESG among professional investors affect the performance of stocks. When weighted components rise in value, this causes an increase in the overall value of the index they are weighted too. What trends are driving index performance? Recent economic and social trends have led to higher levels of ESG integration and maintenance among firms worldwide and higher prioritization from investors to include ESG-focused firms in their investment choices. From a global survey group over ********* of the respondents were willing to prioritize ESG benefits over a higher return on their investment. These trends influenced the performance of securities on the market, leading to an increased value of individual weighted stocks, resulting in an overall increase in the index value.

  13. B

    Bolivia Consumer Price Index (CPI), April, 2025 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). Bolivia Consumer Price Index (CPI), April, 2025 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Bolivia/cpi/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1967 - Apr 30, 2025
    Area covered
    Bolivia
    Description

    Consumer Price Index (CPI) in Bolivia, April, 2025 The most recent value is 129.4723 index points as of April 2025, an increase compared to the previous value of 128.323 index points. Historically, the average for Bolivia from January 1967 to April 2025 is 59.5055 index points. The minimum of 0 index points was recorded in January 1967, while the maximum of 171.39 index points was reached in December 2017. | TheGlobalEconomy.com

  14. P

    Peru Consumer Price Index (CPI), July, 2025 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). Peru Consumer Price Index (CPI), July, 2025 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Peru/cpi/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2012 - Jul 31, 2025
    Area covered
    Peru
    Description

    Consumer Price Index (CPI) in Peru, July, 2025 The most recent value is 115.894 index points as of July 2025, an increase compared to the previous value of 115.6905 index points. Historically, the average for Peru from January 2012 to July 2025 is 92.159 index points. The minimum of 73.451 index points was recorded in January 2012, while the maximum of 115.894 index points was reached in July 2025. | TheGlobalEconomy.com

  15. P

    Palestine Consumer Price Index (CPI), May, 2025 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). Palestine Consumer Price Index (CPI), May, 2025 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Palestine/cpi/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2005 - May 31, 2025
    Area covered
    Palestine
    Description

    Consumer Price Index (CPI) in Palestine, May, 2025 The most recent value is 319.4719 index points as of May 2025, an increase compared to the previous value of 258.4933 index points. Historically, the average for Palestine from January 2005 to May 2025 is 115.1512 index points. The minimum of 79.43 index points was recorded in January 2005, while the maximum of 319.4719 index points was reached in May 2025. | TheGlobalEconomy.com

  16. T

    All-Transactions House Price Index for Champaign County, IL

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2019). All-Transactions House Price Index for Champaign County, IL [Dataset]. https://tradingeconomics.com/united-states/all-transactions-house-price-index-for-champaign-county-il-fed-data.html
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Jul 14, 2019
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Illinois, Champaign County
    Description

    All-Transactions House Price Index for Champaign County, IL was 199.89000 Index 2000=100 in January of 2024, according to the United States Federal Reserve. Historically, All-Transactions House Price Index for Champaign County, IL reached a record high of 199.89000 in January of 2024 and a record low of 54.61000 in January of 1979. Trading Economics provides the current actual value, an historical data chart and related indicators for All-Transactions House Price Index for Champaign County, IL - last updated from the United States Federal Reserve on September of 2025.

  17. Consumer Price Index 2023 - West Bank and Gaza

    • pcbs.gov.ps
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Palestinian Central Bureau of Statistics (2024). Consumer Price Index 2023 - West Bank and Gaza [Dataset]. https://www.pcbs.gov.ps/PCBS-Metadata-en-v5.2/index.php/catalog/729
    Explore at:
    Dataset updated
    Mar 10, 2024
    Dataset authored and provided by
    Palestinian Central Bureau of Statisticshttp://pcbs.gov.ps/
    Time period covered
    2023
    Area covered
    Gaza, Gaza Strip, West Bank
    Description

    Abstract

    The Consumer price surveys primarily provide the following: Data on CPI in Palestine covering the West Bank, Gaza Strip and Jerusalem J1 for major and sub groups of expenditure. Statistics needed for decision-makers, planners and those who are interested in the national economy. Contribution to the preparation of quarterly and annual national accounts data.

    Consumer Prices and indices are used for a wide range of purposes, the most important of which are as follows: Adjustment of wages, government subsidies and social security benefits to compensate in part or in full for the changes in living costs. To provide an index to measure the price inflation of the entire household sector, which is used to eliminate the inflation impact of the components of the final consumption expenditure of households in national accounts and to dispose of the impact of price changes from income and national groups. Price index numbers are widely used to measure inflation rates and economic recession. Price indices are used by the public as a guide for the family with regard to its budget and its constituent items. Price indices are used to monitor changes in the prices of the goods traded in the market and the consequent position of price trends, market conditions and living costs. However, the price index does not reflect other factors affecting the cost of living, e.g. the quality and quantity of purchased goods. Therefore, it is only one of many indicators used to assess living costs. It is used as a direct method to identify the purchasing power of money, where the purchasing power of money is inversely proportional to the price index.

    Geographic coverage

    Palestine West Bank Gaza Strip Jerusalem

    Analysis unit

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Universe

    The target population for the CPI survey is the shops and retail markets such as grocery stores, supermarkets, clothing shops, restaurants, public service institutions, private schools and doctors.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A non-probability purposive sample of sources from which the prices of different goods and services are collected was updated based on the establishment census 2017, in a manner that achieves full coverage of all goods and services that fall within the Palestinian consumer system. These sources were selected based on the availability of the goods within them. It is worth mentioning that the sample of sources was selected from the main cities inside Palestine: Jenin, Tulkarm, Nablus, Qalqiliya, Ramallah, Al-Bireh, Jericho, Jerusalem, Bethlehem, Hebron, Gaza, Jabalia, Dier Al-Balah, Nusseirat, Khan Yunis and Rafah. The selection of these sources was considered to be representative of the variation that can occur in the prices collected from the various sources. The number of goods and services included in the CPI is approximately 730 commodities, whose prices were collected from 3,200 sources. (COICOP) classification is used for consumer data as recommended by the United Nations System of National Accounts (SNA-2008).

    Sampling deviation

    Not apply

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    A tablet-supported electronic form was designed for price surveys to be used by the field teams in collecting data from different governorates, with the exception of Jerusalem J1. The electronic form is supported with GIS, and GPS mapping technique that allow the field workers to locate the outlets exactly on the map and the administrative staff to manage the field remotely. The electronic questionnaire is divided into a number of screens, namely: First screen: shows the metadata for the data source, governorate name, governorate code, source code, source name, full source address, and phone number. Second screen: shows the source interview result, which is either completed, temporarily paused or permanently closed. It also shows the change activity as incomplete or rejected with the explanation for the reason of rejection. Third screen: shows the item code, item name, item unit, item price, product availability, and reason for unavailability. Fourth screen: checks the price data of the related source and verifies their validity through the auditing rules, which was designed specifically for the price programs. Fifth screen: saves and sends data through (VPN-Connection) and (WI-FI technology).

    In case of the Jerusalem J1 Governorate, a paper form has been designed to collect the price data so that the form in the top part contains the metadata of the data source and in the lower section contains the price data for the source collected. After that, the data are entered into the price program database.

    Cleaning operations

    The price survey forms were already encoded by the project management depending on the specific international statistical classification of each survey. After the researcher collected the price data and sent them electronically, the data was reviewed and audited by the project management. Achievement reports were reviewed on a daily and weekly basis. Also, the detailed price reports at data source levels were checked and reviewed on a daily basis by the project management. If there were any notes, the researcher was consulted in order to verify the data and call the owner in order to correct or confirm the information.

    At the end of the data collection process in all governorates, the data will be edited using the following process: Logical revision of prices by comparing the prices of goods and services with others from different sources and other governorates. Whenever a mistake is detected, it should be returned to the field for correction. Mathematical revision of the average prices for items in governorates and the general average in all governorates. Field revision of prices through selecting a sample of the prices collected from the items.

    Response rate

    Not apply

    Sampling error estimates

    The findings of the survey may be affected by sampling errors due to the use of samples in conducting the survey rather than total enumeration of the units of the target population, which increases the chances of variances between the actual values we expect to obtain from the data if we had conducted the survey using total enumeration. The computation of differences between the most important key goods showed that the variation of these goods differs due to the specialty of each survey. The variance of the key goods in the computed and disseminated CPI survey that was carried out on the Palestine level was for reasons related to sample design and variance calculation of different indicators since there was a difficulty in the dissemination of results by governorates due to lack of weights. Non-sampling errors are probable at all stages of data collection or data entry. Non-sampling errors include: Non-response errors: the selected sources demonstrated a significant cooperation with interviewers; so, there wasn't any case of non-response reported during 2019. Response errors (respondent), interviewing errors (interviewer), and data entry errors: to avoid these types of errors and reduce their effect to a minimum, project managers adopted a number of procedures, including the following: More than one visit was made to every source to explain the objectives of the survey and emphasize the confidentiality of the data. The visits to data sources contributed to empowering relations, cooperation, and the verification of data accuracy. Interviewer errors: a number of procedures were taken to ensure data accuracy throughout the process of field data compilation: Interviewers were selected based on educational qualification, competence, and assessment. Interviewers were trained theoretically and practically on the questionnaire. Meetings were held to remind interviewers of instructions. In addition, explanatory notes were supplied with the surveys. A number of procedures were taken to verify data quality and consistency and ensure data accuracy for the data collected by a questioner throughout processing and data entry (knowing that data collected through paper questionnaires did not exceed 5%): Data entry staff was selected from among specialists in computer programming and were fully trained on the entry programs. Data verification was carried out for 10% of the entered questionnaires to ensure that data entry staff had entered data correctly and in accordance with the provisions of the questionnaire. The result of the verification was consistent with the original data to a degree of 100%. The files of the entered data were received, examined, and reviewed by project managers before findings were extracted. Project managers carried out many checks on data logic and coherence, such as comparing the data of the current month with that of the previous month, and comparing the data of sources and between governorates. Data collected by tablet devices were checked for consistency and accuracy by applying rules at item level to be checked.

    Data appraisal

    Other technical procedures to improve data quality: Seasonal adjustment processes and estimations of non-available items' prices: Under each category, a number of common items are used in Palestine to calculate the price levels and to represent the commodity within the commodity group. Of course, it is

  18. United States GDP: Value Added (VA): Quantity Index (QI): saar

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States GDP: Value Added (VA): Quantity Index (QI): saar [Dataset]. https://www.ceicdata.com/en/united-states/nipa-2013-gdp-by-industry-value-added-seasonally-adjusted-at-annual-rates-quantity-index/gdp-value-added-va-quantity-index-qi-saar
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2015 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Gross Domestic Product
    Description

    United States GDP: Value Added (VA): Quantity Index (QI): saar data was reported at 120.481 2009=100 in Mar 2018. This records an increase from the previous number of 119.889 2009=100 for Dec 2017. United States GDP: Value Added (VA): Quantity Index (QI): saar data is updated quarterly, averaging 104.178 2009=100 from Mar 2005 (Median) to Mar 2018, with 53 observations. The data reached an all-time high of 120.481 2009=100 in Mar 2018 and a record low of 97.783 2009=100 in Mar 2005. United States GDP: Value Added (VA): Quantity Index (QI): saar data remains active status in CEIC and is reported by Bureau of Economic Analysis. The data is categorized under Global Database’s USA – Table US.A024: NIPA 2013: GDP by Industry: Value Added: Seasonally Adjusted at Annual Rates: Quantity Index.

  19. S

    Saudi Arabia SA: Import Unit Value Index

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Saudi Arabia SA: Import Unit Value Index [Dataset]. https://www.ceicdata.com/en/saudi-arabia/trade-index/sa-import-unit-value-index
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Saudi Arabia
    Variables measured
    Merchandise Trade
    Description

    Saudi Arabia SA: Import Unit Value Index data was reported at 144.217 2000=100 in 2016. This records a decrease from the previous number of 144.431 2000=100 for 2015. Saudi Arabia SA: Import Unit Value Index data is updated yearly, averaging 144.217 2000=100 from Dec 2000 (Median) to 2016, with 17 observations. The data reached an all-time high of 162.099 2000=100 in 2014 and a record low of 98.867 2000=100 in 2002. Saudi Arabia SA: Import Unit Value Index data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Saudi Arabia – Table SA.World Bank.WDI: Trade Index. Import unit value indices come from UNCTAD's trade database. Unit value indices are based on data reported by countries that demonstrate consistency under UNCTAD quality controls, supplemented by UNCTAD’s estimates using the previous year’s trade values at the Standard International Trade Classification three-digit level as weights. To improve data coverage, especially for the latest periods, UNCTAD constructs a set of average prices indexes at the three-digit product classification of the Standard International Trade Classification revision 3 using UNCTAD’s Commodity Price Statistics, interna¬tional and national sources, and UNCTAD secretariat estimates.; ; United Nations Conference on Trade and Development, Handbook of Statistics and data files. (http://unctadstat.unctad.org); ;

  20. T

    All-Transactions House Price Index for Indiana

    • tradingeconomics.com
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, All-Transactions House Price Index for Indiana [Dataset]. https://tradingeconomics.com/united-states/house-price-index-for-indiana-index-1980-q1-100-q-nsa-fed-data.html
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Indiana
    Description

    All-Transactions House Price Index for Indiana was 510.22000 Index 1980 Q1=100 in January of 2025, according to the United States Federal Reserve. Historically, All-Transactions House Price Index for Indiana reached a record high of 510.22000 in January of 2025 and a record low of 60.75000 in April of 1975. Trading Economics provides the current actual value, an historical data chart and related indicators for All-Transactions House Price Index for Indiana - last updated from the United States Federal Reserve on September of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Price index figures on the production of buildings, 2000 - 2016 | gimi9.com [Dataset]. https://gimi9.com/dataset/nl_4507-price-index-figures-on-the-production-of-buildings--2000---2016/

Price index figures on the production of buildings, 2000 - 2016 | gimi9.com

Explore at:
Dataset updated
May 3, 2025
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Index figures on production prices of dwellings and other buildings reflect the relation between the output value and the output volume and can be used to convert the value of construction output from current prices to fixed prices. The output price index is derived from the series "New dwellings; output indices 2000=100". From the 2nd quarter 2009 on, the figures of the series 2005 = 100 are used and linked to the series 2000 = 100. Statistics Netherlands publishes data on the value of construction output. The volume of construction output, however, cannot be deduced from the value, which is subject to price changes. The price index on the building costs of new dwellings eliminates the effect of price changes. The price index on construction output is calculated by distributing the value of the output (current prices) over the quarters essential to the price setting of the building project. Subsequently, the quarterly output is calculated in fixed prices by using the price index on the building costs of new dwellings. The index figure of the output price is the sum of the current prices divided by the sum of the fixed prices (*100). Possibilities for selection: - Total construction - Total construction of new dwellings/buildings - New dwellings - New buildings in the private sector - New buildings in the non-commercial sector - Total other buildings - Other dwellings - Other buildings in the private sector - Other buildings in the non-commercial sector Data available from 1st quarter 2000 till 4th quarter 2016 Frequency: discontinued Status of the figures: The figures of 2016 are provisional. Since this table has been discontinued, the data will not become definitive. Changes as of January 29 2018 None, this table is discontinued. When will new figures become available? This table is succeeded by Production on buildings; price index 2015 = 100. See paragraph 3. Linking recommendation If you want to compile long-term series with linked price indices on production of buildings, you can link the figures on price level 1995 with the figures on price level 2000. For that, the percentage change from the 2nd quarter 2005 with the 1st quarter 2005 must be calculated, as the price index for the 1st quarter 2005 is the last figure published on price level 1995. This change must then be adjusted to the figures for the 1st quarter 2005 of the series 1995. The 2nd quarter index of the linked series is calculated by calculating the difference between the 1st quarter 2005 and the 2nd quarter 2005 according to the series on price level 2000 and multiplying this by the index for the 1st quarter 2005 according to the series on price level 1995. In the example: (119/120) x 148=147 (rounded). For the 3rd quarter 2005 the index is calculated analogously, where because of rounding problems the first quarter figures must be used for the link.

Search
Clear search
Close search
Google apps
Main menu