Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81โ102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This dataset contains various features of residential properties along with their corresponding prices. It is suitable for exploring and analyzing factors influencing housing prices and for building predictive models to estimate the price of a property based on its attributes.
| Feature | Description |
|---|---|
| price | The price of the property. |
| area | The total area of the property in square feet. |
| bedrooms | The number of bedrooms in the property. |
| bathrooms | The number of bathrooms in the property. |
| stories | The number of stories (floors) in the property. |
| mainroad | Indicates whether the property is located on a main road (binary: yes/no). |
| guestroom | Indicates whether the property has a guest room (binary: yes/no). |
| basement | Indicates whether the property has a basement (binary: yes/no). |
| hotwaterheating | Indicates whether the property has hot water heating (binary: yes/no). |
| airconditioning | Indicates whether the property has air conditioning (binary: yes/no). |
| parking | The number of parking spaces available with the property. |
| prefarea | Indicates whether the property is in a preferred area (binary: yes/no). |
| furnishingstatus | The furnishing status of the property (e.g., furnished, semi-furnished, unfurnished). |
License: This dataset is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Facebook
Twitterttd22/house-price dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual house price data based on a sub-sample of the Regulated Mortgage Survey.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Median price paid for residential property in England and Wales, by property type and administrative geographies. Annual data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average House Prices in the United States increased to 534100 USD in August from 478200 USD in July of 2025. This dataset includes a chart with historical data for the United States New Home Average Sales Price.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Listing Price per Square Feet in the United States (MEDLISPRIPERSQUFEEUS) from Jul 2016 to Oct 2025 about square feet, listing, median, price, and USA.
Facebook
TwitterIn the third quarter of 2025, Mexicans paid on average **** million Mexican pesos to acquire a residential property. Compared to the same period of the previous year, the nominal price increased by nearly ******* pesos. Mexico City registered the highest price for this type of property, with an average exceeding ***** million pesos per residential unit. Housing tenureCompared to renting or borrowing, house ownership is the favored form of housing tenure in Mexico. In 2022, nearly ** percent of all Mexican households owned their homes, while only ** percent rented them. Moreover, roughly ** percent of the owned households in the country were completely paid off, while the remaining households were still in the payment process. Mortgages in MexicoMortgages, or homeownership loans, are debt instruments used by individuals to acquire real estate property, without needing to pay the total cost upfront. Mortgages are universally common and important for Mexicoโs residential real estate industry. In 2024, almost ********mortgage loans were granted in Mexico, increasing from the lowest amount the country had seen in the past decade a year earlier. From the mortgage value granted in 2022, approximately ** percent came from private banks.
Facebook
TwitterThe S&P Case Shiller Portland Home Price Index has increased steadily in recent years. The index measures changes in the prices of existing single-family homes. The index value was equal to 100 as of January 2000, so if the index value is equal to *** in a given month, for example, it means that the house prices have increased by ** percent since 2000. The value of the S&P Case Shiller Portland Home Price Index amounted to ***** in August 2024. That was higher the national average.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US House Price Index. from United States. Source: Federal Housing Finance Agency. Track economic data with โฆ
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US Existing Home Median Sales Price. from United States. Source: National Association of Realtors. Track ecโฆ
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
So this data set is collected for completing a college project ,which is an android app for calculating the price of houses.
This data is scraped from magic bricks website between june 2021 and july 2021 .
magicbricks.com
With the help of the data available one can make a regression model to predict house prices.
Facebook
TwitterMexico's housing market demonstrates significant regional price variations, with Mexico City emerging as the most expensive area for residential property in the third quarter of 2025. The capital city's average house price of 3.93 million Mexican pesos far exceeds the national average of 1.86 million pesos, highlighting the stark contrast in property values across the country. This disparity reflects broader economic and demographic trends shaping Mexico's real estate landscape. Sustained growth in housing prices The Mexican housing market has experienced substantial growth over the past decade, with home prices more than doubling since 2010. By the second quarter of 2025, the nominal house price index reached 287 points, representing a 187 percent increase from the baseline year. Even when adjusted for inflation, the real house price index showed a notable 50 percent growth, underscoring the market's resilience and attractiveness to investors. The mortgage market is dominated by three main player types: Infonavit, Fovissste, and commercial banks including Sofomes. In 2023, Infonavit, a scheme by Mexico's National Housing Fund Institute which provides lending to workers in the formal sector, was responsible for the majority of mortgages granted to individuals. Challenges in mortgage lending Despite the overall growth in housing prices, Mexico's mortgage market has faced challenges in recent years. The number of new mortgage loans granted has declined over the past decade, falling by approximately 200,000 loans between 2008 and 2023. This decrease in lending activity may be attributed to various factors, including economic uncertainties and changing consumer preferences. The state of Mexico, which is home to 13 percent of the country's population, likely plays a significant role in shaping these trends given its large demographic influence on the national housing market.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Colorado (COSTHPI) from Q1 1975 to Q3 2025 about CO, appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Affordability ratios calculated by dividing house prices by gross annual residence-based earnings. Based on the median and lower quartiles of both house prices and earnings in England and Wales.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Task Description: Real Estate Price Prediction
This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.
The goal is to build a regression model that can predict the Price of a property based on the provided features.
Dataset Columns:
ID: A unique identifier for each property.
Square_Feet: The area of the property in square meters.
Num_Bedrooms: The number of bedrooms in the property.
Num_Bathrooms: The number of bathrooms in the property.
Num_Floors: The number of floors in the property.
Year_Built: The year the property was built.
Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).
Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).
Garage_Size: The size of the garage in square meters.
Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).
Distance_to_Center: The distance from the property to the city center in kilometers.
Price: The target variable that represents the price of the property. This is the value we aim to predict.
Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81โ102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.