100+ datasets found
  1. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  2. Stock Market Data Europe ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Europe ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-europe-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Denmark, Slovenia, Lithuania, Finland, Belgium, Croatia, Switzerland, Andorra, Latvia, Italy, Europe
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  3. T

    Gold - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1968 - Jul 11, 2025
    Area covered
    World
    Description

    Gold rose to 3,354.76 USD/t.oz on July 11, 2025, up 0.92% from the previous day. Over the past month, Gold's price has fallen 0.92%, but it is still 39.14% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on July of 2025.

  4. Stock Prices Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Stock Prices Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-price
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  5. F

    Index of Common Stock Prices, New York Stock Exchange for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Common Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11007USM322NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.

  6. Machine Learning Models for Gold Price Prediction (Forecast)

    • kappasignal.com
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Machine Learning Models for Gold Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/machine-learning-models-for-gold-price.html
    Explore at:
    Dataset updated
    Dec 19, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Machine Learning Models for Gold Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. gold price dataset

    • kaggle.com
    Updated Mar 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lakshmipathi N (2019). gold price dataset [Dataset]. https://www.kaggle.com/lakshmi25npathi/gold-price/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Lakshmipathi N
    Description

    gold price dataset for a stock market analysis. Reference from Quandl https://www.quandl.com/

  8. Daily stock price indexes of oil and gas commodities 2020-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Daily stock price indexes of oil and gas commodities 2020-2025 [Dataset]. https://www.statista.com/statistics/1343812/daily-stock-price-indexes-of-oil-and-gas-commodities/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2, 2020 - Feb 4, 2025
    Area covered
    Worldwide
    Description

    This statistic shows the stock prices of selected oil and gas commodities from January 2, 2020 to February 4, 2025. After the Russian invasion of Ukraine in February 2022, energy prices climbed significantly. The highest increase can be observed for natural gas, whose price peaked in August and September 2022. By the beginning of 2023, natural gas price started to decline.

  9. k

    S&P GSCI Gold Index Forecast Data

    • kappasignal.com
    csv, json
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). S&P GSCI Gold Index Forecast Data [Dataset]. https://www.kappasignal.com/2024/05/gold-brighter-future-ahead.html
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Predictions: S&P GSCI Gold index is expected to continue its upward trend in the near term, driven by safe-haven demand amid ongoing geopolitical uncertainties and concerns about global economic growth. The index may face some resistance at higher levels, but it is likely to break through and reach new highs. Risks: The main risks to the S&P GSCI Gold index's upward trend include a significant improvement in the global economic outlook, a sharp decline in geopolitical tensions, and a shift in investor sentiment towards riskier assets. A prolonged period of high inflation could also pose a risk to the index, as investors may seek alternative safe-haven assets such as bonds.

  10. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Jul 14, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, rose to 3520 points on July 14, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 3.86% and is up 18.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  11. Tesla monthly share price on the Nasdaq stock exchange 2010-2025

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Tesla monthly share price on the Nasdaq stock exchange 2010-2025 [Dataset]. https://www.statista.com/statistics/1331184/tesla-share-price-development-monthly/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2010 - Feb 2025
    Area covered
    United States
    Description

    The price of Tesla shares traded on the Nasdaq stock exchange remained rather stable between July 2010 and January 2020. With the beginning of 2020, the price of Tesla share increased dramatically and stood at ****** U.S. dollars per share in November 2021. Since then, the price of Tesla share fluctuated significantly and reached its peak at ****** U.S. dollars per share in December 2024, before falling dramatically in February 2025. Why did Tesla's stock value go up in 2020? Despite the effects of the pandemic, Tesla share prices experienced a massive increase in 2020. Tesla kept increasing its output levels throughout the year, except for the second quarter, and released its new vehicle Tesla Model Y. Additionally, when the company was added to the S&P 500 index in August 2020, it instilled further trust in investors. In 2020, Tesla was the top-performing stock on the S&P 500 index, and two years later, in 2024, it ranked among the ten largest companies on the index by market capitalization. Steady growth in the last decade Founded in 2003, Tesla primarily focuses on designing and producing electric vehicles, as well as energy generation and storage systems. Since then, Tesla's revenue has steadily increased, reaching nearly ** million U.S. dollars in 2024. Most of the revenue came from automotive sales in 2024. Tesla's first electric car, the Roadster, was sold between 2008 and 2012. Currently, the company offers four primary electric vehicles: Model 3, Model Y, Model S, and Model X.

  12. d

    Historical stock prices | Level 1,2,3 Data and System events

    • datarade.ai
    .json, .csv
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinAPI (2025). Historical stock prices | Level 1,2,3 Data and System events [Dataset]. https://datarade.ai/data-products/historical-stock-prices-level-1-2-3-data-and-system-events-coinapi
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset provided by
    Coinapi Ltd
    Authors
    CoinAPI
    Area covered
    Libya, Bermuda, American Samoa, Namibia, Niue, Sierra Leone, Peru, Thailand, Germany, Bouvet Island
    Description

    FinFeedAPI provides equity market data covering over 11,000 symbols, featuring historical T+1 data with an unlimited loopback period. We deliver everything from detailed trade records and multiple levels of order book depth (Level 1-3) to crucial regulatory and system messages.

    Our data is engineered for performance, featuring nano-second precision timestamps. This ensures a competitive edge for high-frequency trading by enabling fair, accurate, and auditable transaction sequencing, critical for regulatory compliance. Access comprehensive equity market intelligence directly through our robust API offerings.

    Why FinFeedAPI?

    Market Coverage & Data Depth: - Historical Data: T+1 data on 11K+ symbols with unlimited historical lookback. - Trade Feeds: Detailed trade records including timestamps, sizes, prices, and conditions (e.g., odd lot, intermarket sweep, extended hours). - Level 1 Quotes: Best bid/ask prices, sizes, and timestamps. - Level 2 Price Book: Market depth with multiple bid/ask prices and aggregate order sizes. - Level 3 Order Book: The complete order book detailing individual orders.

    Essential Messages: - Admin Messages: Trading status, official open/close prices, auction states, short sale restrictions, retail liquidity indicators, security directory. - System Events: Exchange-level notifications for key trading session phases.

    Precision & Reliability: - Nano-second Timestamps: Ensuring fair, accurate, and auditable transaction sequencing for HFT and compliance. - Institutional Trust: Relied upon by financial institutions for dependable equity market information.

    Financial institutions and trading firms rely on FinFeedAPI for mission-critical equity market intelligence. We are committed to delivering clean, precise, and comprehensive data when it matters most. If you require dependable and granular stock market data, FinFeedAPI provides the actionable insights you need.

  13. T

    United States Stock Market Index (US500) - Index Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Nov 7, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). United States Stock Market Index (US500) - Index Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/spx:ind
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Nov 7, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 11, 2025
    Area covered
    United States
    Description

    Prices for United States Stock Market Index (US500) including live quotes, historical charts and news. United States Stock Market Index (US500) was last updated by Trading Economics this July 11 of 2025.

  14. M

    Microsoft - 39 Year Stock Price History | MSFT

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Microsoft - 39 Year Stock Price History | MSFT [Dataset]. https://www.macrotrends.net/stocks/charts/MSFT/microsoft/stock-price-history
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    The latest closing stock price for Microsoft as of June 18, 2025 is 480.24. An investor who bought $1,000 worth of Microsoft stock at the IPO in 1986 would have $8,056,718 today, roughly 8,057 times their original investment - a 25.94% compound annual growth rate over 39 years. The all-time high Microsoft stock closing price was 480.24 on June 18, 2025. The Microsoft 52-week high stock price is 481.00, which is 0.2% above the current share price. The Microsoft 52-week low stock price is 344.79, which is 28.2% below the current share price. The average Microsoft stock price for the last 52 weeks is 422.77. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.

  15. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 11, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  16. m

    Dhaka Stock Exchange Historical Data

    • data.mendeley.com
    • paperswithcode.com
    Updated Mar 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tashreef Muhammad (2024). Dhaka Stock Exchange Historical Data [Dataset]. http://doi.org/10.17632/23553sm4tn.3
    Explore at:
    Dataset updated
    Mar 8, 2024
    Authors
    Tashreef Muhammad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dhaka
    Description

    The dataset contains historical technical data of Dhaka Stock Exchange (DSE). The data was collected from different sources found in the internet where the data was publicly available. The data available here are used for information and research purposes and though to the best of our knowledge, it does not contain any mistakes, there might still be some mistakes. It is not encourages to use this dataset for portfolio management purposes and use this dataset out of your own interest. The contributors do not hold any liability if it is used for any purposes.

  17. Stock Market Historical Prices

    • kaggle.com
    Updated Mar 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Historical Prices [Dataset]. https://www.kaggle.com/jacksoncrow/stock-market-historical-prices
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 5, 2020
    Dataset provided by
    Kaggle
    Authors
    Oleh Onyshchak
    Description
  18. Intel monthly share price on the Nasdaq stock exchange 2010-2025

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Intel monthly share price on the Nasdaq stock exchange 2010-2025 [Dataset]. https://www.statista.com/statistics/1331224/intel-share-price-development-monthly/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2010 - Feb 2025
    Area covered
    United States
    Description

    The price of Intel shares traded on the Nasdaq stock exchange fluctuated significantly during the period between January 2010 and February 2025. The price of Intel share stood at ***** U.S. dollar as of the end of February 2025, significantly higher than the previous month.

  19. k

    What happens to gold if CPI increases? (Forecast)

    • kappasignal.com
    Updated Dec 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What happens to gold if CPI increases? (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/what-happens-to-gold-if-cpi-increases.html
    Explore at:
    Dataset updated
    Dec 21, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What happens to gold if CPI increases?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. M

    Exxon - 41 Year Stock Price History | XOM

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Exxon - 41 Year Stock Price History | XOM [Dataset]. https://www.macrotrends.net/stocks/charts/XOM/exxon/stock-price-history
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    The latest closing stock price for Exxon as of June 27, 2025 is 109.38. An investor who bought $1,000 worth of Exxon stock at the IPO in 1984 would have $41,833 today, roughly 42 times their original investment - a 9.60% compound annual growth rate over 41 years. The all-time high Exxon stock closing price was 122.12 on October 07, 2024. The Exxon 52-week high stock price is 126.34, which is 15.5% above the current share price. The Exxon 52-week low stock price is 97.80, which is 10.6% below the current share price. The average Exxon stock price for the last 52 weeks is 112.58. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
Organization logo

Stock Market Dataset

Historical daily prices of Nasdaq-traded stocks and ETFs

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip(547714524 bytes)Available download formats
Dataset updated
Apr 2, 2020
Authors
Oleh Onyshchak
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Overview

This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

Data Structure

The date for every symbol is saved in CSV format with common fields:

  • Date - specifies trading date
  • Open - opening price
  • High - maximum price during the day
  • Low - minimum price during the day
  • Close - close price adjusted for splits
  • Adj Close - adjusted close price adjusted for both dividends and splits.
  • Volume - the number of shares that changed hands during a given day

All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

Search
Clear search
Close search
Google apps
Main menu