MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Climate data--including 30-Year-normal data--provided by PRISM Climate Group at Oregon State University. Data is in raster formats.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling techniques and are available at multiple spatial/temporal resolutions, covering the period from 1895 to the present.
{{description}}
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The PRISM NaNDA dataset provides daily weather data—minimum temperature (tmin), maximum temperature (tmax), and precipitation (ppt)—for all census tracts in the contiguous United States (CONUS) from 1981 to 2024. These data are derived from Oregon State University’s PRISM Climate Group (Northwest Alliance for Computational Science & Engineering & Oregon State University, 2025), which produces high-resolution (4 km x 4 km) gridded climate estimates.In addition to daily values, the dataset includes two types of annual tract-level summary measures:Percentiles (0.5th, 1st, 5th, 95th, 99th, and 99.5th), calculated using a rolling 10-year window of historical data, available for tmin, tmax, and ppt. Percents, representing the proportion of days per year that fall above or below these percentile thresholds, available for tmin and tmax only.These features enable robust analyses of long-term environmental trends, extreme weather events, and their potential impacts on population health.
This data set consists of PRSIM mean air temperature climatologies for Alaska in GeoTIFF format. The files in this data set are available from the PRISM Climate Group as text files but have been processed into GeoTIFFs. These are monthly climatologies with a resolution of 771m. Units are degrees Celsius. There are multiple climatological periods currently available through PRISM, but only one is currently available through SNAP in this dataset: 1971-2000.
The PRISM daily and monthly datasets are gridded climate datasets for the conterminous United States, produced by the PRISM Climate Group at Oregon State University. Grids are developed using PRISM (Parameter-elevation Regressions on Independent Slopes Model). PRISM interpolation routines simulate how weather and climate vary with elevation, and account for coastal effects, temperature inversions, and terrain barriers that can cause rain shadows. Station data are assimilated from many networks across the country. For more information, see the Descriptions of PRISM Spatial Climate Datasets.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Monthly 30-year "normal" dataset covering the conterminous U.S., including the Russian River watershed, averaged over the climatological period 1981-2010. Contains spatially gridded average monthly and average annual precipitation, maximum temperature, and minimum temperature at 800m grid cell resolution. Distribution of the point measurements to the spatial grid was accomplished using the PRISM model, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University. This dataset was heavily peer reviewed, and is available free-of-charge on the PRISM website. The dataset was downloaded from the PRISM website in 2019
Monthly 30-year 'normal' dataset covering the conterminous U.S., averaged over the climatological period 1981-2010. Contains spatially gridded average annual precipitation at 800m grid cell resolution. Distribution of the point measurements to the spatial grid was accomplished using the PRISM model, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University. This dataset was heavily peer reviewed, and is available free-of-charge on the PRISM website.
This is a dataset download, not a document. The Open button will start the download.This data layer is an element of the Oregon GIS Framework. Monthly 30-year "normal" dataset covering Oregon, averaged over the climatological period 1991-2020. Contains spatially gridded average annual total precipitation at 800m (30 arc-second) grid cell resolution. Distribution of the point measurements to the spatial grid was accomplished using the PRISM model, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University. This dataset is available free-of-charge on the PRISM website.
This dataset was created using the PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate mapping system, developed by Dr. Christopher Daly, PRISM Climate Group director. PRISM is a unique knowledge-based system that uses point measurements of precipitation, temperature, and other climatic factors to produce continuous, digital grid estimates of monthly, yearly, and event-based climatic parameters. Continuously updated, this unique analytical tool incorporates point data, a digital elevation model, and expert knowledge of complex climatic extremes, including rain shadows, coastal effects, and temperature inversions. PRISM data sets are recognized world-wide as the highest-quality spatial climate data sets currently available. PRISM is the USDA's official climatological data. The latest snapshot of PRISM available free of charge and hosted here was developed with the AN81m method documented here: http://www.prism.oregonstate.edu/documents/PRISM_datasets.pdf
This Resource serves to explain and contain the methodology, R codes, and results of the PRISM freshwater supply key indicator analysis for my thesis. For more information, see my thesis at the USU Digital Commons.
Freshwater availability in the state can be summarized using streamflow, reservoir level, precipitation, and temperature data. Climate data for this study have a period of record greater than 30 years, preferably extending beyond 1950, and are representative of natural conditions at the county-level.
Oregon State University, Northwest Alliance for Computational Science and Engineering PRISM precipitation and temperature gridded data are representative of statewide, to county-level, from 1895-2015. These data are available online from the PRISM Climate Group. Using the R ‘prism’ package, monthly PRISM 4km raster grids were downloaded. Boundary shapefiles of Utah state, and each county, were obtained online from the Utah Geospatial Resource Center webpage. Using the R ‘rgdal’ and ‘sp’ packages, these shapefiles were transformed from their native World Geodetic System 1984 coordinate system to match the PRISM BIL raster’s native North American Datum 1983 coordinate system. Using the R ‘raster’ package, medians of PRISM precipitation grids at each spatial area of interest were calculated and summed for water years and seasons. Medians were also calculated for PRISM temperature grids and averaged over water years and seasons. For analysis of single months, the median results were used for all PRISM indicators. Seasons were analyzed for the calendar year which they are in, Winter being the first season of each year. Freshwater availability key indicators were non-parametrically separated per temporal/spatial delineation into quintiles representing Very Wet/Very High/Hot (top 20% of values), Wet/High/Hot (60-80%), Moderate/Mid-level (40-60%), Dry/Low/Cool (20-40%), to Very Dry/Very Low/Cool (bottom 20%). Each quintile bin was assigned a rank value 1-5, with ‘5’ being the value of the top quintile, in preparation for the Kendall Tau-b correlation analysis. These results, along with USGS irrigation withdrawal and acreage data, were loaded into R. State-level quintile results were matched according to USGS report year. County quintile results were matched with corresponding USGS irrigation withdrawal and acreage county-level data per report year for all other areas of interest. Using the base R function cor(), with the “kendall” method selected (which is, by default, the Kendall Tau-b calculation), relationship correlation matrices were produced for all areas of interest. The USGS irrigation withdrawal and acreage data correlation analysis matrices were created using the R ‘corrplot’ package for all areas of interest.
See Word file for an Example PRISM Analysis, made by Alan Butler at the United States Bureau of Reclamation, which was used as a guide for this analysis.
Monthly PRISM datasets covering the conterminous U.S., from 1981-2019 were used to calculate yearly average air temperature and spatially averaged yearly precipitation for selected counties in and near the Permian Basin. Distribution of the measurements was accomplished using the PRISM, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University. The aggregated data was used to display and/or analyze spatially distributed yearly average air temperature and spatially averaged yearly precipitation for select counties in and near the Permian Basin from 1981-2019.
This data set contains spatially gridded average monthly and annual maximum temperature for the climatological period 1981-2010. Distribution of the point measurements to a spatial grid was accomplished using the PRISM model, developed and applied by Chris Daly of the PRISM Climate Group at Oregon State University.
Spatially distributed monthly and annual temperature. Each file represents 1 month of 1 year for the period 1895-1997. Distribution of the point measurements to a spatial grid was accomplished using the PRISM model, developed by Christopher Daly, Director, The PRISM Climate Group, Oregon State University. Care should be taken in estimating temperature values at any single point on the map. Temperature estimated for each grid cell is an average over the entire area of that cell; thus, point temperature can be estimated at a spatial precision no better than half the resolution of a cell. For example, the temperature data were distributed at a resolution of approximately 4km. Therefore, point temperature can be estimated at a spatial precision no better than 2km. However, the overall distribution of temperature features is thought to be accurate. For further information, the online PRISM homepage can be found at URL:http://prism.oregonstate.edu. Further information on the current state of this project can be found at URL:ftp://ftp.ncdc.noaa.gov/pub/data/prism100
Spatially distributed monthly and annual average maximum/minimum/dew point temperature. Each file represents 1 month of 1 year for the period January 1997 to the present. Distribution of the point measurements to a spatial grid was accomplished using the PRISM model, developed by Christopher Daly, Director, The PRISM Climate Group, Oregon State University. Care should be taken in estimating temperature values at any single point on the map. Temperature estimated for each grid cell is an average over the entire area of that cell; thus, point temperature can be estimated at a spatial precision no better than half the resolution of a cell. For example, the temperature data were distributed at a resolution of approximately 4km. Therefore, point temperature can be estimated at a spatial precision no better than 2km. However, the overall distribution of temperature features is thought to be accurate. For further information, the online PRISM homepage can be found at URL:http://prism.oregonstate.edu.
Monthly 30-year "normal" dataset covering the conterminous U.S., averaged over the climatological period 1991-2020. Contains spatially gridded average annual total precipitation at 4km grid cell resolution. Distribution of the point measurements to the spatial grid was accomplished using the PRISM model, developed and applied by Dr. Christopher Daly of the PRISM Climate Group at Oregon State University. This dataset is available free-of-charge on the PRISM website.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The PRISM Climate Group gathers climate observations and then develops spatial climate datasets to reveal short- and long-term climate patterns. The vailable parameters include precipitation, temperature, dewpoint and vapor pressure and are available at multiple spatial/temporal resolutions, with some datasets going back to 1895.
This feature layer contains the gridded one month PRISM Temperature Normals from Oregon State University on a 0.5 x 0.5 degree grid for the contiguous United States. The data was originally created in February 2018. These climatologies will be updated along with the drought outlook tools.The one month climatology has the same time period as the one month lead for the Climate Prediction Center's One Month Outlook. This climatology is for the current one month forecast released on the third Thursday of every month and updated on the last day of the month for the following month. This is a tool for the Drought Outlook Interactive Web Map and Drought Outlook Interactive Experience.The Climate Prediction Center uses climatologies with a base period from 1981 to 2010.For more information visit the PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu
This dataset is a continuous parameter grid (CPG) of normal (average) annual minimum air temperature data for the years 1981 through 2010 in the Pacific Northwest. Source temperature data was produced by the PRISM Climate Group at Oregon State University.
These datasets are continuous parameter grids (CPG) of total annual precipitation data for the years 2000 through 2016 in the Pacific Northwest. Source precipitation data was produced by the PRISM Climate Group at Oregon State University.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Climate data--including 30-Year-normal data--provided by PRISM Climate Group at Oregon State University. Data is in raster formats.