https://www.icpsr.umich.edu/web/ICPSR/studies/38937/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38937/terms
The 2020 Census Demographic and Housing Characteristics Noisy Measurement File is an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in DAS_2020_DHC_Production_Code/das_decennial/programs/engine/primitives.py at main uscensusbureau/DAS_2020_DHC_Production_Code (github.com) The 2020 Census Demographic and Housing Characteristics Noisy Measurement File includes zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023] ), which added positive or negative integer-valued noise to each of the resulting counts. These are estimated counts of individuals and housing units included in the 2020 Census Edited File (CEF), which includes confidential data collected in the 2020 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the Census Demographic and Housing Characteristics Summary File. In addition to the noisy measurements, constraints based on invariant calculations --- counts computed without noise --- are also included (with the exception of the state-level total populations, which can be sourced separately from data.census.gov). The Noisy Measurement File was produced using the official "production settings," the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File. The noisy measurements are produced in an early stage of the TDA. Afterward, these noisy measurements are post-processed to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these noisy measurements to enable data users to evaluate the impact of disclosure avoidance variability on 2020 Census data. The 2020 Census Demographic and Housing Characteristics (DHC) Noisy Measurement File has been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004). These data are available for download (i.e. not restricted access). Due to their size, they must be downloaded through the link on this metadata page and not through the standard ICPSR download. The link will take you to the Globus site where these data are housed. A README file is located in the Globus repository. Please refer to that for pertinent information. The Globus holding site requires users to create an account to access these data. Accounts can be created through existing institutional access and by personal access. Please see the Globus "How to get Started" page for more information.
https://www.icpsr.umich.edu/web/ICPSR/studies/38777/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38777/terms
The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files are an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code). The NMF was produced using the official "production settings," the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File. The NMF consists of the full set of privacy-protected statistical queries (counts of individuals or housing units with particular combinations of characteristics) of confidential 2010 Census data relating to the redistricting data portion of the 2010 Demonstration Data Products Suite - Redistricting and Demographic and Housing Characteristics File - Production Settings (2023-04-03). These statistical queries, called "noisy measurements" were produced under the zero-Concentrated Differential Privacy framework (Bun, M. and Steinke, T [2016]; see also Dwork C. and Roth, A. [2014]) implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023]), which added positive or negative integer-valued noise to each of the resulting counts. The noisy measurements are an intermediate stage of the TDA prior to the post-processing the TDA then performs to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these 2010 Census demonstration data to enable data users to evaluate the expected impact of disclosure avoidance variability on 2020 Census data. The 2010 Census Production Settings Redistricting Data (P.L. 94-171) Demonstration Noisy Measurement Files (2023-04-03) have been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004). The data include zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism. These are estimated counts of individuals and housing units included in the 2010 Census Edited File (CEF), which includes confidential data initially collected in the 2010 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) (https://www2.census.gov/programs-surveys/decennial/2020/program-management/data-product- planning/2010-demonstration-data-products/04 Demonstration_Data_Products_Suite/2023-04-03/). As these 2010 Census demonstration data are intended to support study of the design and expected impacts of the 2020 Disclosure Avoidance System, the 2010 CEF records were pre-processed before application of the zCDP framework. This pre-processing converted the 2010 CEF records into the input-file format, response codes, and tabulation categories used for the 2020 Census, which differ in substantive ways from the format, response codes, and tabulation categories originally used for the 2010 Census. The NMF provides estimates of counts of persons in the CEF by various characteristics and combinations of characteristics, including their reported race and ethnicity, whether they were of voting age, whether they resided in a housing unit or one of 7 group quarters types, and their census block of residence, after the addition of discrete Gaussian noise (with the scale parameter determined by the privacy-loss budget allocation for that particular query under zCDP). Noisy measurements of the counts of occupied and vacant housing units by census block are also included. Lastly, data on constraints--information into which no noise was infused by the Disclosure Avoidance System (DAS) and used by the TDA to post-process the noisy measurements into the 2010 Census Production Settings Privacy-Protected Microdata File - Redistricting (P.L. 94-171) and Demographic and Housing Characteristics File (2023-04-03) --are provided. These data are available for download (i.e. not restricted access). Due to their size, they must be downloaded through the link on this
In 2018, global spending on cybersecurity was projected to reach around 66 billion U.S. dollars, more than doubling in value since 2011. Utilizing an array of software and IT services, the field of cybersecurity focuses on ensuring the safety of digital systems and information.
Cybersecurity Market
Cybersecurity measures are utilized in companies, government organizations, and among private customers around the world. The field has come a long way from the days of frustrating antivirus software on personal computers, and now includes sizable segments for network security, data protection, and vulnerability management. The amount of digitalized, private information has grown massively in the past decade, increasing the need for more advanced cyber security technology.
Cyber attacks Considering the steady increase in cyberattacks over the years, it is no surprise that the cybersecurity market is growing so rapidly. Hundreds of millions of private records are exposed each year, risking the privacy and security of both individual consumers and businesses around the world. Phishing and network intrusion are the most common types of attack experienced by companies, but preventable mistakes like lost devices and inadvertent disclosures are also relatively common.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://www.icpsr.umich.edu/web/ICPSR/studies/38937/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38937/terms
The 2020 Census Demographic and Housing Characteristics Noisy Measurement File is an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in DAS_2020_DHC_Production_Code/das_decennial/programs/engine/primitives.py at main uscensusbureau/DAS_2020_DHC_Production_Code (github.com) The 2020 Census Demographic and Housing Characteristics Noisy Measurement File includes zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023] ), which added positive or negative integer-valued noise to each of the resulting counts. These are estimated counts of individuals and housing units included in the 2020 Census Edited File (CEF), which includes confidential data collected in the 2020 Census of Population and Housing. The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the Census Demographic and Housing Characteristics Summary File. In addition to the noisy measurements, constraints based on invariant calculations --- counts computed without noise --- are also included (with the exception of the state-level total populations, which can be sourced separately from data.census.gov). The Noisy Measurement File was produced using the official "production settings," the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File. The noisy measurements are produced in an early stage of the TDA. Afterward, these noisy measurements are post-processed to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these noisy measurements to enable data users to evaluate the impact of disclosure avoidance variability on 2020 Census data. The 2020 Census Demographic and Housing Characteristics (DHC) Noisy Measurement File has been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004). These data are available for download (i.e. not restricted access). Due to their size, they must be downloaded through the link on this metadata page and not through the standard ICPSR download. The link will take you to the Globus site where these data are housed. A README file is located in the Globus repository. Please refer to that for pertinent information. The Globus holding site requires users to create an account to access these data. Accounts can be created through existing institutional access and by personal access. Please see the Globus "How to get Started" page for more information.