100+ datasets found
  1. Global population 1800-2100, by continent

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  2. Countries with the highest population growth rate 2024

    • statista.com
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the highest population growth rate 2024 [Dataset]. https://www.statista.com/statistics/264687/countries-with-the-highest-population-growth-rate/
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.

  3. Countries with the highest population decline rate 2024

    • statista.com
    Updated Sep 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the highest population decline rate 2024 [Dataset]. https://www.statista.com/statistics/264689/countries-with-the-highest-population-decline-rate/
    Explore at:
    Dataset updated
    Sep 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In the Cook Islands in 2024, the population decreased by about 2.24 percent compared to the previous year, making it the country with the highest population decline rate in 2024. Of the 20 countries with the highest rate of population decline, the majority are island nations, where emigration rates are high (especially to Australia, New Zealand, and the United States), or they are located in Eastern Europe, which suffers from a combination of high emigration rates and low birth rates.

  4. f

    The effect of bigger human bodies on the future global calorie requirements

    • plos.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lutz Depenbusch; Stephan Klasen (2023). The effect of bigger human bodies on the future global calorie requirements [Dataset]. http://doi.org/10.1371/journal.pone.0223188
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Lutz Depenbusch; Stephan Klasen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Existing studies show how population growth and rising incomes will cause a massive increase in the future global demand for food. We add to the literature by estimating the potential effect of increases in human weight, caused by rising BMI and height, on future calorie requirements. Instead of using a market based approach, the estimations are solely based on human energy requirements for maintenance of weight. We develop four different scenarios to show the effect of increases in human height and BMI. In a world where the weight per age-sex group would stay stable, we project calorie requirements to increases by 61.05 percent between 2010 and 2100. Increases in BMI and height could add another 18.73 percentage points to this. This additional increase amounts to more than the combined calorie requirements of India and Nigeria in 2010. These increases would particularly affect Sub-Saharan African countries, which will already face massively rising calorie requirements due to the high population growth. The stark regional differences call for policies that increase food access in currently economically weak regions. Such policies should shift consumption away from energy dense foods that promote overweight and obesity, to avoid the direct burden associated with these conditions and reduce the increases in required calories. Supplying insufficient calories would not solve the problem but cause malnutrition in populations with weak access to food. As malnutrition is not reducing but promoting rises in BMI levels, this might even aggravate the situation.

  5. Forecast: world population, by continent 2100

    • statista.com
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast: world population, by continent 2100 [Dataset]. https://www.statista.com/statistics/272789/world-population-by-continent/
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Whereas the population is expected to decrease somewhat until 2100 in Asia, Europe, and South America, it is predicted to grow significantly in Africa. While there were 1.5 billion inhabitants on the continent at the beginning of 2024, the number of inhabitants is expected to reach 3.8 billion by 2100. In total, the global population is expected to reach nearly 10.4 billion by 2100. Worldwide population In the United States, the total population is expected to steadily increase over the next couple of years. In 2024, Asia held over half of the global population and is expected to have the highest number of people living in urban areas in 2050. Asia is home to the two most populous countries, India and China, both with a population of over one billion people. However, the small country of Monaco had the highest population density worldwide in 2021. Effects of overpopulation Alongside the growing worldwide population, there are negative effects of overpopulation. The increasing population puts a higher pressure on existing resources and contributes to pollution. As the population grows, the demand for food grows, which requires more water, which in turn takes away from the freshwater available. Concurrently, food needs to be transported through different mechanisms, which contributes to air pollution. Not every resource is renewable, meaning the world is using up limited resources that will eventually run out. Furthermore, more species will become extinct which harms the ecosystem and food chain. Overpopulation was considered to be one of the most important environmental issues worldwide in 2020.

  6. Vintage 2013 Population Estimates: County Total Population and Components of...

    • catalog.data.gov
    Updated Sep 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2013 Population Estimates: County Total Population and Components of Change [Dataset]. https://catalog.data.gov/dataset/vintage-2013-population-estimates-county-total-population-and-components-of-change
    Explore at:
    Dataset updated
    Sep 1, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change for States and Counties: April 1, 2010 to July 1, 2013 // File: 7/1/2013 County Population Estimates // Source: U.S. Census Bureau, Population Division // Release Date: March 2014 // Note: Total population change includes a residual. This residual represents the change in population that cannot be attributed to any specific demographic component. See Population Estimates Terms and Definitions at http://www.census.gov/popest/about/terms.html. // Net international migration in the United States includes the international migration of both native and foreign-born populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net migration of natives to and from the United States, and (d) the net movement of the Armed Forces population between the United States and overseas. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. See Geographic Terms and Definitions at http://www.census.gov/popest/about/geo/terms.html for a list of the states that are included in each region and division. All geographic boundaries for these population estimates are as of January 1, 2013. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2013) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.

  7. d

    Population Estimates: Census Bureau Version: Components of Change Estimates

    • datasets.ai
    • catalog.data.gov
    2
    Updated Sep 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Commerce (2024). Population Estimates: Census Bureau Version: Components of Change Estimates [Dataset]. https://datasets.ai/datasets/population-estimates-census-bureau-version-components-of-change-estimates
    Explore at:
    2Available download formats
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Department of Commerce
    Description

    Annual Resident Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change; for the United States, States, Metropolitan Statistical Areas, Micropolitan Statistical Areas, Counties, and Puerto Rico: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through March. // Note: Total population change includes a residual. This residual represents the change in population that cannot be attributed to any specific demographic component. // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // The Office of Management and Budget's statistical area delineations for metropolitan, micropolitan, and combined statistical areas, as well as metropolitan divisions, are those issued by that agency in September 2018. // Current data on births, deaths, and migration are used to calculate population change since the 2010 Census. An annual time series of estimates is produced, beginning with the census and extending to the vintage year. The vintage year (e.g., Vintage 2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.

  8. Data from: The diversity of population responses to environmental change

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    csv, pdf
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fernando Colchero; Owen R. Jones; Dalia A. Conde; Dave Hodgson; Felix Zajitschek; Benedikt R. Schmidt; Aurelio F. Malo; Susan C. Alberts; Peter H. Becker; Sandra Bouwhuis; Anne M. Bronikowski; Kristel M. De Vleeschouwer; Richard J. Delahay; Stefan Dummermuth; Eduardo Fernández-Duque; John Frisenvænge; Martin Hesselsøe; Sam Larson; Jean-Francois Lemaitre; Jennifer McDonald; David A.W. Miller; Colin O'Donnell; Craig Packer; Becky E. Raboy; Christopher J. Reading; Erik Wapstra; Henri Weimerskirch; Geoffrey M. While; Annette Baudisch; Thomas Flatt; Tim Coulson; Jean-Michel Gaillard; Kristel M. Vleeschouwer; David Hodgson; Chris J. Reading; Fernando Colchero; Owen R. Jones; Dalia A. Conde; Dave Hodgson; Felix Zajitschek; Benedikt R. Schmidt; Aurelio F. Malo; Susan C. Alberts; Peter H. Becker; Sandra Bouwhuis; Anne M. Bronikowski; Kristel M. De Vleeschouwer; Richard J. Delahay; Stefan Dummermuth; Eduardo Fernández-Duque; John Frisenvænge; Martin Hesselsøe; Sam Larson; Jean-Francois Lemaitre; Jennifer McDonald; David A.W. Miller; Colin O'Donnell; Craig Packer; Becky E. Raboy; Christopher J. Reading; Erik Wapstra; Henri Weimerskirch; Geoffrey M. While; Annette Baudisch; Thomas Flatt; Tim Coulson; Jean-Michel Gaillard; Kristel M. Vleeschouwer; David Hodgson; Chris J. Reading (2024). Data from: The diversity of population responses to environmental change [Dataset]. http://doi.org/10.5061/dryad.d5f54s7
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Fernando Colchero; Owen R. Jones; Dalia A. Conde; Dave Hodgson; Felix Zajitschek; Benedikt R. Schmidt; Aurelio F. Malo; Susan C. Alberts; Peter H. Becker; Sandra Bouwhuis; Anne M. Bronikowski; Kristel M. De Vleeschouwer; Richard J. Delahay; Stefan Dummermuth; Eduardo Fernández-Duque; John Frisenvænge; Martin Hesselsøe; Sam Larson; Jean-Francois Lemaitre; Jennifer McDonald; David A.W. Miller; Colin O'Donnell; Craig Packer; Becky E. Raboy; Christopher J. Reading; Erik Wapstra; Henri Weimerskirch; Geoffrey M. While; Annette Baudisch; Thomas Flatt; Tim Coulson; Jean-Michel Gaillard; Kristel M. Vleeschouwer; David Hodgson; Chris J. Reading; Fernando Colchero; Owen R. Jones; Dalia A. Conde; Dave Hodgson; Felix Zajitschek; Benedikt R. Schmidt; Aurelio F. Malo; Susan C. Alberts; Peter H. Becker; Sandra Bouwhuis; Anne M. Bronikowski; Kristel M. De Vleeschouwer; Richard J. Delahay; Stefan Dummermuth; Eduardo Fernández-Duque; John Frisenvænge; Martin Hesselsøe; Sam Larson; Jean-Francois Lemaitre; Jennifer McDonald; David A.W. Miller; Colin O'Donnell; Craig Packer; Becky E. Raboy; Christopher J. Reading; Erik Wapstra; Henri Weimerskirch; Geoffrey M. While; Annette Baudisch; Thomas Flatt; Tim Coulson; Jean-Michel Gaillard; Kristel M. Vleeschouwer; David Hodgson; Chris J. Reading
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The current extinction and climate change crises pressure us to predict population dynamics with ever-greater accuracy. Although predictions rest on the well-advanced theory of age-structured populations, two key issues remain poorly-explored. Specifically, how the age-dependency in demographic rates and the year-to-year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations, and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age-specific demographic rates and when ages are reduced to stages. We find that stage- vs. age-based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival-fecundity-trade-offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age-specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.

  9. M

    Pakistan Population Growth Rate 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Pakistan Population Growth Rate 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/PAK/pakistan/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pakistan
    Description

    Chart and table of Pakistan population from 1950 to 2025. United Nations projections are also included through the year 2100.

  10. Population growth in Iceland 2000-2022

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population growth in Iceland 2000-2022 [Dataset]. https://www.statista.com/statistics/594556/population-growth-in-iceland/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Iceland
    Description

    After having decreased by 0.5 percent due to increasing emigration after the financial crisis in 2009, the annual population growth in Iceland has been positive since 2010. In 2022, the country's population increased by around three percent. At the beginning of 2022, the population of Iceland was 387,758 inhabitants.

    Migration

    One reason behind Iceland's growing population is immigration to Iceland. The number peaked in 2017, when nearly 15,000 people immigrated to Iceland. A high number of the immigrants who arrived in Iceland in 2021 came from other European countries, the largest group coming from Poland.

    Decreasing fertility rate

    While the number of births in Iceland increased slightly over recent years after having fallen until 2016, the fertility rate decreased over the last decade. In 2021, the fertility rate in Iceland was 1.82 children per woman. Despite this, Iceland's birth rate is roughly double its death rate, which results in natural population growth.

  11. H

    House Building Market Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). House Building Market Report [Dataset]. https://www.promarketreports.com/reports/house-building-market-9247
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Overview The global house building market is poised to witness substantial growth in the coming years, expanding from a market size of USD 119.45 billion in 2025 to a projected USD 211.20 billion by 2033, registering a CAGR of 6.10%. The increasing demand for housing units, driven by urbanization, population growth, and rising disposable incomes, is a major growth driver for the market. Additionally, government initiatives and policies aimed at supporting homeownership and affordable housing are contributing to market expansion. Growth Drivers and Challenges The house building market is influenced by various drivers and challenges. Key drivers include the rising number of households, growing urbanization, and increasing disposable incomes. Technological advancements, such as the adoption of smart home features and the use of sustainable building practices, are also driving market growth. However, factors such as rising land and construction costs, labor shortages, and stringent regulatory requirements pose challenges to the industry. Despite these challenges, the long-term growth prospects for the house building market remain promising, driven by the sustained demand for housing units and government support for the industry. Recent developments include: January 2023: Godrej Properties Limited acquired a 60-acre land in Chennai to develop a residential project as it seeks to expand business amid the rise in housing demand. Spread across 60 acres, the proposed project is estimated to have a developable potential of approximately 1.6 million square feet of saleable area, comprising primarily of residential plotted development., January 2023: Shapoorji Pallonji Group acquired about 9 acres of land near Hadapsar in Pune to develop a new project. The company will develop nearly 1,350 housing units, including duplexes and penthouses, in this new 9-acre project with an estimated sales revenue of over INR 1,000 crores (USD 10 billion).. Notable trends are: The need for more housing units due to growing population and urbanization drives the market growth.

  12. Population Estimates: Estimates by Age Group, Sex, Race, and Hispanic Origin...

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Population Estimates: Estimates by Age Group, Sex, Race, and Hispanic Origin [Dataset]. https://catalog.data.gov/dataset/population-estimates-estimates-by-age-group-sex-race-and-hispanic-origin
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin; for the United States, States, Counties; and for Puerto Rico and its Municipios: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // Current data on births, deaths, and migration are used to calculate population change since the 2010 Census. An annual time series of estimates is produced, beginning with the census and extending to the vintage year. The vintage year (e.g., Vintage 2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.

  13. N

    Elk Grove Village, IL Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Elk Grove Village, IL Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Elk Grove Village from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/elk-grove-village-il-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Elk Grove Village, Illinois
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Elk Grove Village population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Elk Grove Village across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Elk Grove Village was 31,350, a 0.78% decrease year-by-year from 2022. Previously, in 2022, Elk Grove Village population was 31,596, a decline of 1.61% compared to a population of 32,112 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Elk Grove Village decreased by 3,346. In this period, the peak population was 34,802 in the year 2001. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Elk Grove Village is shown in this column.
    • Year on Year Change: This column displays the change in Elk Grove Village population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Elk Grove Village Population by Year. You can refer the same here

  14. K

    California 2050 Projected Urban Growth

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Oct 13, 2003
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2003). California 2050 Projected Urban Growth [Dataset]. https://koordinates.com/layer/671-california-2050-projected-urban-growth/
    Explore at:
    dwg, geopackage / sqlite, geodatabase, kml, pdf, shapefile, mapinfo tab, mapinfo mif, csvAvailable download formats
    Dataset updated
    Oct 13, 2003
    Dataset authored and provided by
    State of California
    License

    https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/

    Area covered
    Description

    50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.

    By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.

    These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.

    Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.

    This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.

  15. N

    Lockport, NY Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Lockport, NY Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Lockport from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/lockport-ny-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lockport, New York
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Lockport population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Lockport across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Lockport was 20,436, a 0.61% decrease year-by-year from 2022. Previously, in 2022, Lockport population was 20,561, a decline of 0.82% compared to a population of 20,732 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Lockport decreased by 1,899. In this period, the peak population was 22,335 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Lockport is shown in this column.
    • Year on Year Change: This column displays the change in Lockport population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lockport Population by Year. You can refer the same here

  16. Data from: Demographic correction – a tool for inference from individuals to...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, txt
    Updated Jun 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adam Klimeš; Adam Klimeš; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben (2022). Data from: Demographic correction – a tool for inference from individuals to populations [Dataset]. http://doi.org/10.5061/dryad.p8cz8w9s6
    Explore at:
    txt, binAvailable download formats
    Dataset updated
    Jun 5, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Adam Klimeš; Adam Klimeš; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben; Jitka Klimešová; Zdeněk Janovský; Tomáš Herben
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Estimation of responses of organisms to their environment using experimental manipulations, and comparison of such responses across sets of species, is one of the primary tools in ecology research. The most common approach is to compare response of a single life stage of species to an environmental factor and use this information to draw conclusions about population dynamics of these species. Such approach ignores the fact that interspecific fitness differences measured at a single life stage are not directly comparable and cannot be extrapolated to lifetime fitness of individuals and thus species' population dynamics. Comparison of one life stage only while omitting demographic information can strongly bias conclusions, both in experimental studies with a few species, and in large comparative studies.

    We illustrate the effect of this omission using both an exaggerated fictitious example, and biological data on congeneric species differing in their demography. We are showing, taking simple assumptions, that different demography can completely revert conclusions reached by a comparison based on an experiment focusing on a single life stage.

    We show that a "demographic correction", namely translating observed effects into differences in outcomes of demographic models, is a solution to this problem. It requires turning the detected effects from the experiment into changes of transition probabilities of projection matrix models. Although such solution is limited by the low number of species with demographic data available, we believe that existing data (and data likely to be collected in the near future) permit at least approximate handling of this problem.

  17. Data from: A demographic ménage à trois: interactions between disturbances...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Jul 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew R. Tye; Eric S. Menges; Carl Weekley; Pedro F. Quintana-Ascencio; Roberto Salguero-Gómez; Matthew Tye (2017). A demographic ménage à trois: interactions between disturbances both amplify and dampen population dynamics of an endemic plant [Dataset]. http://doi.org/10.5061/dryad.8q57v
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 13, 2017
    Dataset provided by
    Archbold Biological Station
    University of Central Florida
    University of Sheffield
    Authors
    Matthew R. Tye; Eric S. Menges; Carl Weekley; Pedro F. Quintana-Ascencio; Roberto Salguero-Gómez; Matthew Tye
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Florida
    Description

    Natural and anthropogenic disturbances co-occur in most systems, but how they interact to shape demographic outcomes remains poorly understood. Such interactions may alter dynamics of populations in non-additive ways, making demographic predictions challenging when focusing on only one disturbance. Thus, understanding the interactive effects of such disturbances is critically important to determine the population viability of most species under a diversity of stressors. We used a hierarchical integral projection model (IPM), parameterized with 13 years of field data across 20 populations, encompassing 2435 individuals of an endangered herb, Liatris ohlingerae. We examined interactive effects of vertebrate herbivory, fire and anthropogenic activities (sand roads) on vital rates (e.g. survival, growth, reproduction, recruitment) and ultimately on population growth rates (λ), to test the hypothesis that interactions amplify or dampen differences in λ depending on environmental contexts. We constructed megamatrices to determine coupled dynamics in individuals damaged vs. not damaged by herbivores in roadsides and in Florida scrub with different times since fire. We identified strong interactive effects of fire with herbivory and habitat with herbivory on vital rates and on population growth rates in the IPM model. We also found different patterns of variation in λ between habitat and time-since-fire scenarios; population growth rates were higher in roadside populations compared to scrub populations and declined with increasing time since fire. Herbivory had interactive effects with both fire and human disturbances on λ. Herbivory resulted in decreased differences in λ due to anthropogenic disturbance and slightly increased differences in λ due to time since fire. Synthesis. The co-occurrence of various disturbances may both amplify and dampen the effects of other disturbances on population growth rate, thus shaping complex population dynamics that are neither linear nor additive. These realistic nonlinearities represent challenges in understanding and projecting of population dynamics. Here, we examined the effects of various sources of disturbance on the population dynamics of an endangered plant species, finding complex interactions affecting population growth rates. We argue that integration of multiple, interacting stressors in IPMs will allow more accurate estimation of the overall effects of ecological processes on species viability.

  18. US Population Health Management (PHM) Market Analysis - Size and Forecast...

    • technavio.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Population Health Management (PHM) Market Analysis - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-population-health-management-market-analysis
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States
    Description

    Snapshot img

    US Population Health Management Market Size 2025-2029

    The US population health management (PHM) market size is forecast to increase by USD 6.04 billion, at a CAGR of 7.4% between 2024 and 2029.

    Population Health Management (PHM) is a critical aspect of healthcare delivery In the modern era, focusing on improving the health outcomes of large populations. The market is experiencing significant growth, driven by several key trends. One of the primary factors fueling this growth is the increasing adoption of healthcare IT solutions. These technologies enable healthcare providers to collect, manage, and analyze large amounts of patient data, facilitating personalized care and population health improvement. Another trend is the growing adoption of analytics in PHM. Analytics tools help identify patterns and insights from data, enabling early intervention and prevention of diseases. However, the high perceived costs associated with PHM solutions remain a challenge for market growth. Despite this, the benefits of PHM, including improved patient outcomes and reduced healthcare costs, make it a worthwhile investment for healthcare organizations.
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    Population Health Management (PHM) is a proactive healthcare approach focusing on improving the wider determinants of health and addressing health inequalities in various physical, economic, and social contexts. The market reflects the growing recognition of the importance of system-wide outcome focus, local intelligence, and data-driven decision-making in addressing ill health and managing chronic conditions such as cardiovascular disease. PHM integrates qualitative and quantitative data to identify and address the unique needs of populations, enabling personalized interventions and care models. Infrastructure, leadership, and information governance are crucial elements in implementing effective PHM strategies. 
    Payment reform and incentives are driving the transformation of healthcare systems towards a more integrated care model, reducing hospitalization and improving overall population health. The market is experiencing significant growth due to the increasing awareness of the importance of addressing the root causes of ill health and the need for a more holistic approach to healthcare. This shift towards PHM is influenced by the economic, social, and demographic changes In the global population, emphasizing the need for a more resource-efficient and sustainable healthcare system.
    

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Product
    
      Software
      Services
    
    
    Deployment
    
      Cloud
      On-premises
    
    
    End-user
    
      Healthcare providers
      Healthcare payers
      Employers and government bodies
    
    
    Geography
    
      US
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period.
    

    Population Health Management (PHM) software is a crucial tool In the US healthcare sector, collecting and analyzing patient data from various healthcare systems to predict health conditions and improve overall patient care. Advanced data analytics, including data visualizations and business intelligence, enable PHM software to identify health risks within communities and promote value-based care. The adoption of PHM software is on the rise due to the increasing prevalence of chronic conditions and the demand for efficient, cost-effective healthcare. PHM software also facilitates system-wide outcome focus, integrating qualitative and quantitative data, local intelligence, and decision-making to redesign care services for at-risk groups.

    The US healthcare transformation prioritizes PHM, with NHS England, NHS trusts, Public health, VCSE organizations, and Integrated Care Systems (ICSs) utilizing PHM software to address health inequalities and improve health outcomes. PHM software's infrastructure, leadership, information governance, and digital infrastructure support the integration of interventions, care models, hospitalization incentives, payment reforms, and integrated care systems. PHM software plays a vital role in addressing health issues such as cardiovascular disease (CVD) and improving overall population health.

    Get a glance at the market report of share of various segments Request Free Sample

    Market Dynamics

    Our US Population Health Management (PHM) Market researchers analyzed the data with 2024 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.

    What are the key market drivers leading to the rise in adopti

  19. Total population of China 1980-2029

    • statista.com
    • flwrdeptvarieties.store
    Updated Jan 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of China 1980-2029 [Dataset]. https://www.statista.com/statistics/263765/total-population-of-china/
    Explore at:
    Dataset updated
    Jan 17, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    According to latest figures, the Chinese population decreased by 1.39 million to around 1.408 billion people in 2024. After decades of rapid growth, China arrived at the turning point of its demographic development in 2022, which was earlier than expected. The annual population decrease is estimated to remain at moderate levels until around 2030 but to accelerate thereafter. Population development in China China had for a long time been the country with the largest population worldwide, but according to UN estimates, it has been overtaken by India in 2023. As the population in India is still growing, the country is very likely to remain being home of the largest population on earth in the near future. Due to several mechanisms put into place by the Chinese government as well as changing circumstances in the working and social environment of the Chinese people, population growth has subsided over the past decades, displaying an annual population growth rate of -0.1 percent in 2024. Nevertheless, compared to the world population in total, China held a share of about 18 percent of the overall global population in 2022. China's aging population In terms of demographic developments, the birth control efforts of the Chinese government had considerable effects on the demographic pyramid in China. Upon closer examination of the age distribution, a clear trend of an aging population becomes visible. In order to curb the negative effects of an aging population, the Chinese government abolished the one-child policy in 2015, which had been in effect since 1979, and introduced a three-child policy in May 2021. However, many Chinese parents nowadays are reluctant to have a second or third child, as is the case in most of the developed countries in the world. The number of births in China varied in the years following the abolishment of the one-child policy, but did not increase considerably. Among the reasons most prominent for parents not having more children are the rising living costs and costs for child care, growing work pressure, a growing trend towards self-realization and individualism, and changing social behaviors.

  20. M

    Philippines Population Growth Rate 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Philippines Population Growth Rate 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/PHL/philippines/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Philippines
    Description

    Chart and table of Philippines population from 1950 to 2025. United Nations projections are also included through the year 2100.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
Organization logo

Global population 1800-2100, by continent

Explore at:
7 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 4, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

Search
Clear search
Close search
Google apps
Main menu