5 datasets found
  1. m

    Global Burden of Disease analysis dataset of noncommunicable disease...

    • data.mendeley.com
    Updated Apr 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Cundiff (2023). Global Burden of Disease analysis dataset of noncommunicable disease outcomes, risk factors, and SAS codes [Dataset]. http://doi.org/10.17632/g6b39zxck4.10
    Explore at:
    Dataset updated
    Apr 6, 2023
    Authors
    David Cundiff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.

    The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.

    These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis. The data include the following: 1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc). 2. A text file to import the analysis database into SAS 3. The SAS code to format the analysis database to be used for analytics 4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6 5. SAS code for deriving the multiple regression formula in Table 4. 6. SAS code for deriving the multiple regression formula in Table 5 7. SAS code for deriving the multiple regression formula in Supplementary Table 7
    8. SAS code for deriving the multiple regression formula in Supplementary Table 8 9. The Excel files that accompanied the above SAS code to produce the tables

    For questions, please email davidkcundiff@gmail.com. Thanks.

  2. Supplement 1. SAS macro for adaptive cluster sampling and Aletris data sets...

    • wiley.figshare.com
    html
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas Philippi (2023). Supplement 1. SAS macro for adaptive cluster sampling and Aletris data sets from the example. [Dataset]. http://doi.org/10.6084/m9.figshare.3524501.v1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Wileyhttps://www.wiley.com/
    Authors
    Thomas Philippi
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    File List ACS.zip -- .zip file containing SAS macro and example code, and example Aletris bracteata data sets. acs.sas chekika_ACS_estimation.sas chekika_1.csv chekika_2.csv philippi.3.1.zip

    Description "acs.sas" is a SAS macro for computing Horvitz-Thompson and Hansen-Horwitz estimates of population size for adaptive cluster sampling with random initial sampling. This version uses ugly base SAS code and does not require SQL or SAS products other than Base SAS, and should work with versions 8.2 onward (tested with versions 9.0 and 9.1). "chekika_ACS_estimation.sas" is example SAS code calling the acs macro to analyze the Chekika Aletris bracteata example data sets. "chekika_1.csv" is an example data set in ASCII comma-delimited format from adaptive cluster sampling of A. bracteata at Chekika, Everglades National Park, with 1-m2 quadrats. "chekika_2.csv" is an example data set in ASCII comma-delimited format from adaptive cluster sampling of A. bracteata at Chekika, Everglades National Park, with 4-m2 quadrats. "philippi.3.1.zip" metadata file generated by morpho, including both xml and css.

  3. d

    Editing EU-SILC UDB Longitudinal Data for Differential Mortality Analyses....

    • demo-b2find.dkrz.de
    Updated Sep 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Editing EU-SILC UDB Longitudinal Data for Differential Mortality Analyses. SAS code and documentation. - Dataset - B2FIND [Dataset]. http://demo-b2find.dkrz.de/dataset/da423f51-0a3c-540f-8ee8-830d0c9e9ef0
    Explore at:
    Dataset updated
    Sep 22, 2025
    Description

    This SAS code extracts data from EU-SILC User Database (UDB) longitudinal files and edits it such that a file is produced that can be further used for differential mortality analyses. Information from the original D, R, H and P files is merged per person and possibly pooled over several longitudinal data releases. Vital status information is extracted from target variables DB110 and RB110, and time at risk between the first interview and either death or censoring is estimated based on quarterly date information. Apart from path specifications, the SAS code consists of several SAS macros. Two of them require parameter specification from the user. The other ones are just executed. The code was written in Base SAS, Version 9.4. By default, the output file contains several variables which are necessary for differential mortality analyses, such as sex, age, country, year of first interview, and vital status information. In addition, the user may specify the analytical variables by which mortality risk should be compared later, for example educational level or occupational class. These analytical variables may be measured either at the first interview (the baseline) or at the last interview of a respondent. The output file is available in SAS format and by default also in csv format.

  4. Cyclist Dataset for Object Detection

    • kaggle.com
    zip
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SemiEmptyGlass (2022). Cyclist Dataset for Object Detection [Dataset]. https://www.kaggle.com/datasets/semiemptyglass/cyclist-dataset
    Explore at:
    zip(2319730694 bytes)Available download formats
    Dataset updated
    Mar 15, 2022
    Authors
    SemiEmptyGlass
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Cyclist Dataset

    Tsinghua-Daimler Cyclist Detection Benchmark Dataset in yolo format for Object Detection

    Context

    I'm not owner the of this dataset, all the credit goes to X. Li, F. Flohr, Y. Yang, H. Xiong, M. Braun, S. Pan, K. Li and D. M. Gavrila, the creators of this dataset.

    Content

    • img size - 2048x1024
    • 13.7k labeled images (1000 images have no cyclists)
    • labels in yolo format: id center_x center_y width height (relative to image width and height)

    Example yolo bounding box:

    0 0.41015625 0.44140625 0.0341796875 0.11328125
    

    Acknowledgments

    License Terms

    This dataset is made freely available non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use, copy, and distribute the data given that you agree:

    • That the dataset comes "AS IS", without express or implied warranty. Although every effort has been made to ensure accuracy, Daimler (or the website host) does not accept any responsibility for errors or omissions.
    • That you include a reference to the above publication in any published work that makes use of the dataset.
    • That if you have altered the content of the dataset or created derivative work, prominent notices are made so that any recipients know that they are not receiving the original data.
    • That you may not use or distribute the dataset or any derivative work for commercial purposes as, for example, licensing or selling the data, or using the data with a purpose to procure a commercial gain.
    • That this original license notice is retained with all copies or derivatives of the dataset.
    • That all rights not expressly granted to you are reserved by Daimler.

    Cite

    X. Li, F. Flohr, Y. Yang, H. Xiong, M. Braun, S. Pan, K. Li and D. M. Gavrila. A New Benchmark for Vision-Based Cyclist Detection. In Proc. of the IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, pp.1028-1033, 2016.
    
  5. m

    Object locations (PNG image format) used for synthetic aperture sonar (SAS)...

    • marine-geo.org
    Updated Sep 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Object locations (PNG image format) used for synthetic aperture sonar (SAS) data [Dataset]. https://www.marine-geo.org/tools/files/31901
    Explore at:
    Dataset updated
    Sep 24, 2024
    Description

    The simulated synthetic aperture sonar (SAS) data presented here was generated using PoSSM [Johnson and Brown 2018]. The data is suitable for bistatic, coherent signal processing and will form acoustic seafloor imagery. Included in this data package is simulated sonar data in Generic Data Format (GDF) files, a description of the GDF file contents, example SAS imagery, and supporting information about the simulated scenes. In total, there are eleven 60 m x 90 m scenes, labeled scene00 through scene10, with scene00 provided with the scatterers in isolation, i.e. no seafloor texture. This is provided for beamformer testing purposes and should result in an image similar to the one labeled "PoSSM-scene00-scene00-starboard-0.tif" in the Related Data Sets tab. The ten other scenes have varying degrees of model variation as described in "Description_of_Simulated_SAS_Data_Package.pdf". A description of the data and the model is found in the associated document called "Description_of_Simulated_SAS_Data_Package.pdf" and a description of the format in which the raw binary data is stored is found in the related document "PSU_GDF_Format_20240612.pdf". The format description also includes MATLAB code that will effectively parse the data to aid in signal processing and image reconstruction. It is left to the researcher to develop a beamforming algorithm suitable for coherent signal and image processing. Each 60 m x 90 m scene is represented by 4 raw (not beamformed) GDF files, labeled sceneXX-STARBOARD-000000 through 000003. It is possible to beamform smaller scenes from any one of these 4 files, i.e. the four files are combined sequentially to form a 60 m x 90 m image. Also included are comma separated value spreadsheets describing the locations of scatterers and objects of interest within each scene. In addition to the binary GDF data, a beamformed GeoTIFF image and a single-look complex (SLC, science file) data of each scene is provided. The SLC data (science) is stored in the Hierarchical Data Format 5 (https://www.hdfgroup.org/), and appended with ".hdf5" to indicate the HDF5 format. The data are stored as 32-bit real and 32-bit complex values. A viewer is available that provides basic graphing, image display, and directory navigation functions (https://www.hdfgroup.org/downloads/hdfview/). The HDF file contains all the information necessary to reconstruct a synthetic aperture sonar image. All major and contemporary programming languages have library support for encoding/decoding the HDF5 format. Supporting documentation that outlines positions of the seafloor scatterers is included in "Scatterer_Locations_Scene00.csv", while the locations of the objects of interest for scene01-scene10 are included in "Object_Locations_All_Scenes.csv". Portable Network Graphic (PNG) images that plot the location of objects of all the objects of interest in each scene in Along-Track and Cross-Track notation are provided.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David Cundiff (2023). Global Burden of Disease analysis dataset of noncommunicable disease outcomes, risk factors, and SAS codes [Dataset]. http://doi.org/10.17632/g6b39zxck4.10

Global Burden of Disease analysis dataset of noncommunicable disease outcomes, risk factors, and SAS codes

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 6, 2023
Authors
David Cundiff
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.

The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.

These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis. The data include the following: 1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc). 2. A text file to import the analysis database into SAS 3. The SAS code to format the analysis database to be used for analytics 4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6 5. SAS code for deriving the multiple regression formula in Table 4. 6. SAS code for deriving the multiple regression formula in Table 5 7. SAS code for deriving the multiple regression formula in Supplementary Table 7
8. SAS code for deriving the multiple regression formula in Supplementary Table 8 9. The Excel files that accompanied the above SAS code to produce the tables

For questions, please email davidkcundiff@gmail.com. Thanks.

Search
Clear search
Close search
Google apps
Main menu