Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.
This statistic displays the various applications of data analytics and mining across procurement processes, according to chief procurement officers (CPOs) worldwide, as of 2017. Fifty-seven percent of the CPOs asked agreed that data analytics and mining had been applied to intelligent and advanced analytics for negotiations, and ** percent of them indicated data analytics and mining had been applied to supplier portfolio optimization processes.
Nearly two thirds of surveyed top managers of large companies operating in Russia viewed process mining as useful for purchasing, in 2021. Furthermore, over ** percent of respondents saw the technology's potential in improving the customer journey map and IT processes.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data mining software market size was valued at USD 7.2 billion in 2023 and is projected to reach USD 15.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.7% during the forecast period. This growth is driven primarily by the increasing adoption of big data analytics and the rising demand for business intelligence across various industries. As businesses increasingly recognize the value of data-driven decision-making, the market is expected to witness substantial growth.
One of the significant growth factors for the data mining software market is the exponential increase in data generation. With the proliferation of internet-enabled devices and the rapid advancement of technologies such as the Internet of Things (IoT), there is a massive influx of data. Organizations are now more focused than ever on harnessing this data to gain insights, improve operations, and create a competitive advantage. This has led to a surge in demand for advanced data mining tools that can process and analyze large datasets efficiently.
Another driving force is the growing need for personalized customer experiences. In industries such as retail, healthcare, and BFSI, understanding customer behavior and preferences is crucial. Data mining software enables organizations to analyze customer data, segment their audience, and deliver personalized offerings, ultimately enhancing customer satisfaction and loyalty. This drive towards personalization is further fueling the adoption of data mining solutions, contributing significantly to market growth.
The integration of artificial intelligence (AI) and machine learning (ML) technologies with data mining software is also a key growth factor. These advanced technologies enhance the capabilities of data mining tools by enabling them to learn from data patterns and make more accurate predictions. The convergence of AI and data mining is opening new avenues for businesses, allowing them to automate complex tasks, predict market trends, and make informed decisions more swiftly. The continuous advancements in AI and ML are expected to propel the data mining software market over the forecast period.
Regionally, North America holds a significant share of the data mining software market, driven by the presence of major technology companies and the early adoption of advanced analytics solutions. The Asia Pacific region is also expected to witness substantial growth due to the rapid digital transformation across various industries and the increasing investments in data infrastructure. Additionally, the growing awareness and implementation of data-driven strategies in emerging economies are contributing to the market expansion in this region.
Text Mining Software is becoming an integral part of the data mining landscape, offering unique capabilities to analyze unstructured data. As organizations generate vast amounts of textual data from various sources such as social media, emails, and customer feedback, the need for specialized tools to extract meaningful insights is growing. Text Mining Software enables businesses to process and analyze this data, uncovering patterns and trends that were previously hidden. This capability is particularly valuable in industries like marketing, customer service, and research, where understanding the nuances of language can lead to more informed decision-making. The integration of text mining with traditional data mining processes is enhancing the overall analytical capabilities of organizations, allowing them to derive comprehensive insights from both structured and unstructured data.
The data mining software market is segmented by components, which primarily include software and services. The software segment encompasses various types of data mining tools that are used for analyzing and extracting valuable insights from raw data. These tools are designed to handle large volumes of data and provide advanced functionalities such as predictive analytics, data visualization, and pattern recognition. The increasing demand for sophisticated data analysis tools is driving the growth of the software segment. Enterprises are investing in these tools to enhance their data processing capabilities and derive actionable insights.
Within the software segment, the emergence of cloud-based data mining solutions is a notable trend. Cloud-based solutions offer several advantages, including s
This chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.
https://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy
Global process mining software market is expected to revenue of around USD 41.74 billion by 2032, growing at a CAGR of around 42.86% between 2024-2032.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The objective of this work is to improve the quality of the information that belongs to the database CubaCiencia, of the Institute of Scientific and Technological Information. This database has bibliographic information referring to four segments of science and is the main database of the Library Management System. The applied methodology was based on the Decision Trees, the Correlation Matrix, the 3D Scatter Plot, etc., which are techniques used by data mining, for the study of large volumes of information. The results achieved not only made it possible to improve the information in the database, but also provided truly useful patterns in the solution of the proposed objectives.
One fifth of surveyed top managers of large companies operating in Russia stated that their businesses either already had integrated process mining or were in the process of implementing it in 2021. Furthermore, nearly 30 percent revealed plans to integrate it in the following three years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DEPRECATED - current version: https://figshare.com/articles/dataset/Dataset_An_IoT-Enriched_Event_Log_for_Process_Mining_in_Smart_Factories/20130794
Modern technologies such as the Internet of Things (IoT) are becoming increasingly important in various domains, including Business Process Management (BPM) research. One main research area in BPM is process mining, which can be used to analyze event logs, e.g., for checking the conformance of running processes. However, there are only a few IoT-based event logs available for research purposes. Some of them are artificially generated, and the problem occurs that they do not always completely reflect the actual physical properties of smart environments. In this paper, we present an IoT-enriched XES event log that is generated by a physical smart factory. For this purpose, we created the DataStream XES extension for representing IoT-data in event logs. Finally, we present some preliminary analysis and properties of the log.
https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use
A synthetic event log with 100,000 traces and 900,000 events that was generated by simulating a simple artificial process model. There are three data attributes in the event log: Priority, Nurse, and Type. Some paths in the model are recorded infrequently based on the value of these attributes. Noise is added by randomly adding one additional event to an increasing number of traces. CPN Tools (http://cpntools.org) was used to generate the event log and inject the noise.
The worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern commercial aircraft have onboard flight data recorders that record several hundred discrete and continuous parameters at approximately 1Hz for the entire duration of the flight. These data contain information about the flight control systems, actuators, engines, landing gear, avionics, and pilot commands. In this paper, recent advances in the development of a novel knowledge discovery process consisting of a suite of data mining techniques for identifying precursors to aviation safety incidents are discussed. The data mining techniques include scalable multiple-kernel learning for large-scale distributed anomaly detection. A novel multivariate time-series search algorithm is used to search for signatures of discovered anomalies on massive datasets. The process can identify operationally significant events due to environmental, mechanical, and human factors issues in the high-dimensional flight operations quality assurance data. All discovered anomalies are validated by a team of independent domain experts. This novel automated knowledge discovery process is aimed at complementing the state-of-the-art human-generated exceedance-based analysis that fails to discover previously unknown aviation safety incidents. In this paper, the discovery pipeline, the methods used, and some of the significant anomalies detected on real-world commercial aviation data are discussed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Three tables created as a support for the article: Monitoring Applications with Process Mining
https://doi.org/10.4121/resource:terms_of_usehttps://doi.org/10.4121/resource:terms_of_use
The comma separated value dataset contains process data from a production process, including data on cases, activities, resources, timestamps and more data fields.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Lifesciences Data Mining and Visualization was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.3 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing demand for sophisticated data analysis tools in the life sciences sector, advancements in analytical technologies, and the rising volume of complex biological data generated from research and clinical trials.
One of the primary growth factors for the Lifesciences Data Mining and Visualization market is the burgeoning amount of data generated from various life sciences applications, such as genomics, proteomics, and clinical trials. With the advent of high-throughput technologies, researchers and healthcare professionals are now capable of generating vast amounts of data, which necessitates the use of advanced data mining and visualization tools to derive actionable insights. These tools not only help in managing and interpreting large datasets but also in uncovering hidden patterns and relationships, thereby accelerating research and development processes.
Another significant driver is the increasing adoption of artificial intelligence (AI) and machine learning (ML) algorithms in the life sciences domain. These technologies have proven to be invaluable in enhancing data analysis capabilities, enabling more precise and predictive modeling of biological systems. By integrating AI and ML with data mining and visualization platforms, researchers can achieve higher accuracy in identifying potential drug targets, understanding disease mechanisms, and personalizing treatment plans. This trend is expected to continue, further propelling the market's growth.
Moreover, the rising emphasis on personalized medicine and the need for precision in healthcare is fueling the demand for data mining and visualization tools. Personalized medicine relies heavily on the analysis of individual genetic, proteomic, and metabolomic profiles to tailor treatments specifically to patients' unique characteristics. The ability to visualize these complex datasets in an understandable and actionable manner is critical for the successful implementation of personalized medicine strategies, thereby boosting the demand for advanced data analysis tools.
From a regional perspective, North America is anticipated to dominate the Lifesciences Data Mining and Visualization market, owing to the presence of a robust healthcare infrastructure, significant investments in research and development, and a high adoption rate of advanced technologies. The European market is also expected to witness substantial growth, driven by increasing government initiatives to support life sciences research and the presence of leading biopharmaceutical companies. The Asia Pacific region is projected to experience the fastest growth, attributed to the expanding healthcare sector, rising investments in biotechnology research, and the increasing adoption of data analytics solutions.
The Lifesciences Data Mining and Visualization market is segmented by component into software and services. The software segment is expected to hold a significant share of the market, driven by the continuous advancements in data mining algorithms and visualization techniques. Software solutions are critical in processing large volumes of complex biological data, facilitating real-time analysis, and providing intuitive visual representations that aid in decision-making. The increasing integration of AI and ML into these software solutions is further enhancing their capabilities, making them indispensable tools in life sciences research.
The services segment, on the other hand, is projected to grow at a considerable rate, as organizations seek specialized expertise to manage and interpret their data. Services include consulting, implementation, and maintenance, as well as training and support. The demand for these services is driven by the need to ensure optimal utilization of data mining software and to keep up with the rapid pace of technological advancements. Moreover, many life sciences organizations lack the in-house expertise required to handle large-scale data analytics projects, thereby turning to external service providers for assistance.
Within the software segment, there is a growing trend towards the development of integrated platforms that combine multiple functionalities, such as data collection, pre
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global process mining solutions market is expanding rapidly, with a market size valued at XXX million in 2025 and projected to grow at a CAGR of XX% during the forecast period of 2025-2033. Key drivers of this growth include increasing adoption of digital transformation initiatives, rising demand for operational efficiency, and growing need for regulatory compliance. Major market trends include the emergence of cloud-based solutions, the integration of artificial intelligence (AI) and machine learning (ML), and the adoption of process mining in new industries, such as healthcare and retail. The market is segmented into various application areas, including manufacturing, financial services, healthcare, retail, and logistics and supply chain management. Automated process discovery tools, process efficiency analytics software, and business process compliance monitoring tools are प्रमुख solution types driving the market. Top companies in the process mining domain include Celonis, SAP Signavio, IBM, ARIS, and Appian, among others. North America, Europe, Asia Pacific, and the Middle East & Africa are key regional markets for process mining solutions.
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Companies in this industry develop software for data mining. Data mining is the process of extracting patterns from large data sets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset with 72000 pins from 117 users in Pinterest. Each pin contains a short raw text and an image. The images are processed using a pretrained Convolutional Neural Network and transformed into a vector of 4096 features.
This dataset was used in the paper "User Identification in Pinterest Through the Refinement of a Cascade Fusion of Text and Images" to idenfity specific users given their comments. The paper is publishe in the Research in Computing Science Journal, as part of the LKE 2017 conference. The dataset includes the splits used in the paper.
There are nine files. text_test, text_train and text_val, contain the raw text of each pin in the corresponding split of the data. imag_test, imag_train and imag_val contain the image features of each pin in the corresponding split of the data. train_user and val_test_users contain the index of the user of each pin (between 0 and 116). There is a correspondance one-to-one among the test, train and validation files for images, text and users. There are 400 pins per user in the train set, and 100 pins per user in the validation and test sets each one.
If you have questions regarding the data, write to: jc dot gomez at ugto dot mx
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Process Mining Platform market is experiencing robust growth, driven by the increasing need for organizations to optimize their business processes and enhance operational efficiency. The market's expansion is fueled by several factors, including the rising adoption of digital transformation initiatives, the growing volume of process data generated by businesses, and the increasing demand for data-driven decision-making. Companies are leveraging process mining to identify bottlenecks, reduce costs, improve compliance, and gain a competitive edge. The market is witnessing a shift towards cloud-based solutions, offering scalability and accessibility benefits. Furthermore, the integration of process mining with other technologies, such as Robotic Process Automation (RPA) and Business Process Management (BPM) suites, is further accelerating market adoption. Leading vendors are continuously innovating, offering advanced analytics and visualization capabilities to provide deeper insights into process performance. This competitive landscape is fostering innovation and driving the development of more sophisticated and user-friendly process mining tools. Despite its rapid growth, the market faces certain challenges. The relatively high cost of implementation, the need for specialized skills to effectively utilize the technology, and concerns regarding data privacy and security can hinder broader adoption. However, these challenges are being addressed by the emergence of more affordable and user-friendly platforms, along with the development of robust data security measures. The market is expected to continue its strong trajectory, driven by technological advancements and increasing demand from various industry verticals, including finance, healthcare, and manufacturing. The forecast period will likely see increased consolidation among vendors and a further focus on industry-specific solutions. The projected CAGR (assuming a reasonable estimate of 20% based on current market trends) signifies the significant potential for growth and investment in this dynamic market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains a variety of publicly available real-life event logs. We derived two types of Petri nets for each event log with two state-of-the-art process miners : Inductive Miner (IM) and Split Miner (SM). Each event log-Petri net pair is intended for evaluating the scalability of existing conformance checking techniques.We used this data-set to evaluate the scalability of the S-Component approach for measuring fitness. The dataset contains tables of descriptive statistics of both process models and event logs. In addition, this dataset includes the results in terms of time performance measured in milliseconds for several approaches for both multi-threaded and single-threaded executions. Last, the dataset contains a cost-comparison of different approaches and reports on the degree of over-approximation of the S-Components approach. The description of the compared conformance checking techniques can be found here: https://arxiv.org/abs/1910.09767. Update:The dataset has been extended with the event logs of the BPIC18 and BPIC19 logs. BPIC19 is actually a collection of four different processes and thus was split into four event logs. For each of the additional five event logs, again, two process models have been mined with inductive and split miner. We used the extended dataset to test the scalability of our tandem repeats approach for measuring fitness. The dataset now contains updated tables of log and model statistics as well as tables of the conducted experiments measuring execution time and raw fitness cost of various fitness approaches. The description of the compared conformance checking techniques can be found here: https://arxiv.org/abs/2004.01781.Update: The dataset has also been used to measure the scalability of a new Generalization measure based on concurrent and repetitive patterns. : A concurrency oracle is used in tandem with partial orders to identify concurrent patterns in the log that are tested against parallel blocks in the process model. Tandem repeats are used with various trace reduction and extensions to define repetitive patterns in the log that are tested against loops in the process model. Each pattern is assigned a partial fulfillment. The generalization is then the average of pattern fulfillments weighted by the trace counts for which the patterns have been observed. The dataset no includes the time results and a breakdown of Generalization values for the dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.