Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set belongs to the paper "Video-to-Model: Unsupervised Trace Extraction from Videos for Process Discovery and Conformance Checking in Manual Assembly", submitted on March 24, 2020, to the 18th International Conference on Business Process Management (BPM).Abstract: Manual activities are often hidden deep down in discrete manufacturing processes. For the elicitation and optimization of process behavior, complete information about the execution of Manual activities are required. Thus, an approach is presented on how execution level information can be extracted from videos in manual assembly. The goal is the generation of a log that can be used in state-of-the-art process mining tools. The test bed for the system was lightweight and scalable consisting of an assembly workstation equipped with a single RGB camera recording only the hand movements of the worker from top. A neural network based real-time object classifier was trained to detect the worker’s hands. The hand detector delivers the input for an algorithm, which generates trajectories reflecting the movement paths of the hands. Those trajectories are automatically assigned to work steps using the position of material boxes on the assembly shelf as reference points and hierarchical clustering of similar behaviors with dynamic time warping. The system has been evaluated in a task-based study with ten participants in a laboratory, but under realistic conditions. The generated logs have been loaded into the process mining toolkit ProM to discover the underlying process model and to detect deviations from both, instructions and ground truth, using conformance checking. The results show that process mining delivers insights about the assembly process and the system’s precision.The data set contains the generated and the annotated logs based on the video material gathered during the user study. In addition, the petri nets from the process discovery and conformance checking conducted with ProM (http://www.promtools.org) and the reference nets modeled with Yasper (http://www.yasper.org/) are provided.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The objective of this work is to improve the quality of the information that belongs to the database CubaCiencia, of the Institute of Scientific and Technological Information. This database has bibliographic information referring to four segments of science and is the main database of the Library Management System. The applied methodology was based on the Decision Trees, the Correlation Matrix, the 3D Scatter Plot, etc., which are techniques used by data mining, for the study of large volumes of information. The results achieved not only made it possible to improve the information in the database, but also provided truly useful patterns in the solution of the proposed objectives.
Facebook
TwitterNearly two thirds of surveyed top managers of large companies operating in Russia viewed process mining as useful for purchasing, in 2021. Furthermore, over ** percent of respondents saw the technology's potential in improving the customer journey map and IT processes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Supplementary Material of the paper "Supplementary Material: Predictive model using Cross Industry Standard Process for Data Mining" includes: 1) APPENDIX 1: SQL Statements for data extraction. Appendix 2: Interview for operating Staff. 2) The DataSet of the normalized data to define the predictive model.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)August 2019 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data is extracted from the Web of Science® [1] You may not copy or distribute this data in whole or in part without the written consent of Clarivate Analytics.Getting StartedThis text provides background information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the sense of research texts. One of the goal of publishing the data is to make it available for further analysis and use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. Each document contains title, list of authors, list of categories, list of research areas, and times cited. The corpus contains only documents in English.The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018.Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper3. Abstract: The abstract of the paper4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’.5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’.6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4]7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,824.All documents in LSC have nonempty abstract, title, categories, research areas and times cited in WoS databases. There are 119 documents with empty authors list, we did not exclude these documents.Data ProcessingThis section describes all steps in order for the LSC to be collected, clean and available to researchers. Processing the data consists of six main steps:Step 1: Downloading of the Data OnlineThis is the step of collecting the dataset online. This is done manually by exporting documents as Tab-delimitated files. All downloaded documents are available online.Step 2: Importing the Dataset to RThis is the process of converting the collection to RData format for processing the data. The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryNot all papers have abstract and categories in the collection. As our research is based on the analysis of abstracts and categories, preliminary detecting and removing inaccurate documents were performed. All documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsTraditionally, abstracts are written in a format of executive summary with one paragraph of continuous writing, which is known as ‘unstructured abstract’. However, especially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc.Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. As a result, some of structured abstracts in the LSC require additional process of correction to split such concatenate words. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. in the corpus. The detection and identification of concatenate words cannot be totally automated. Human intervention is needed in the identification of possible headings of sections. We note that we only consider concatenate words in headings of sections as it is not possible to detect all concatenate words without deep knowledge of research areas. Identification of such words is done by sampling of medicine-related publications. The section headings in such abstracts are listed in the List 1.List 1 Headings of sections identified in structured abstractsBackground Method(s) DesignTheoretical Measurement(s) LocationAim(s) Methodology ProcessAbstract Population ApproachObjective(s) Purpose(s) Subject(s)Introduction Implication(s) Patient(s)Procedure(s) Hypothesis Measure(s)Setting(s) Limitation(s) DiscussionConclusion(s) Result(s) Finding(s)Material (s) Rationale(s)Implications for health and nursing policyAll words including headings in the List 1 are detected in entire corpus, and then words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.Step 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction of concatenate words is completed, the lengths of abstracts are calculated. ‘Length’ indicates the totalnumber of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. However, word limits vary from journal to journal. For instance, Journal of Vascular Surgery recommends that ‘Clinical and basic research studies must include a structured abstract of 400 words or less’[7].In LSC, the length of abstracts varies from 1 to 3805. We decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis. Documents containing less than 30 and more than 500 words in abstracts are removed.Step 6: Saving the Dataset into CSV FormatCorrected and extracted documents are saved into 36 CSV files. The structure of files are described in the following section.The Structure of Fields in CSV FilesIn CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in separated fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/[2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html[3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html[4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US[5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3[6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.[7]P. Gloviczki and P. F. Lawrence, "Information for authors," Journal of Vascular Surgery, vol. 65, no. 1, pp. A16-A22, 2017.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The number of publications of ^ per year. The percentile is given for the sake of comparison with the literature.
Facebook
TwitterThe worldwide civilian aviation system is one of the most complex dynamical systems created. Most modern commercial aircraft have onboard flight data recorders that record several hundred discrete and continuous parameters at approximately 1Hz for the entire duration of the flight. These data contain information about the flight control systems, actuators, engines, landing gear, avionics, and pilot commands. In this paper, recent advances in the development of a novel knowledge discovery process consisting of a suite of data mining techniques for identifying precursors to aviation safety incidents are discussed. The data mining techniques include scalable multiple-kernel learning for large-scale distributed anomaly detection. A novel multivariate time-series search algorithm is used to search for signatures of discovered anomalies on massive datasets. The process can identify operationally significant events due to environmental, mechanical, and human factors issues in the high-dimensional flight operations quality assurance data. All discovered anomalies are validated by a team of independent domain experts. This novel automated knowledge discovery process is aimed at complementing the state-of-the-art human-generated exceedance-based analysis that fails to discover previously unknown aviation safety incidents. In this paper, the discovery pipeline, the methods used, and some of the significant anomalies detected on real-world commercial aviation data are discussed.
Facebook
Twitterhttps://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms
Question Paper Solutions of chapter Data pre-processing and clean-up of Data Mining, 6th Semester , B.Tech in Computer Science & Engineering (Artificial Intelligence and Machine Learning)
Facebook
Twitter
According to our latest research, the global Data Mining Tools market size reached USD 1.93 billion in 2024, reflecting robust industry momentum. The market is expected to grow at a CAGR of 12.7% from 2025 to 2033, reaching a projected value of USD 5.69 billion by 2033. This growth is primarily driven by the increasing adoption of advanced analytics across diverse industries, rapid digital transformation, and the necessity for actionable insights from massive data volumes.
One of the pivotal growth factors propelling the Data Mining Tools market is the exponential rise in data generation, particularly through digital channels, IoT devices, and enterprise applications. Organizations across sectors are leveraging data mining tools to extract meaningful patterns, trends, and correlations from structured and unstructured data. The need for improved decision-making, operational efficiency, and competitive advantage has made data mining an essential component of modern business strategies. Furthermore, advancements in artificial intelligence and machine learning are enhancing the capabilities of these tools, enabling predictive analytics, anomaly detection, and automation of complex analytical tasks, which further fuels market expansion.
Another significant driver is the growing demand for customer-centric solutions in industries such as retail, BFSI, and healthcare. Data mining tools are increasingly being used for customer relationship management, targeted marketing, fraud detection, and risk management. By analyzing customer behavior and preferences, organizations can personalize their offerings, optimize marketing campaigns, and mitigate risks. The integration of data mining tools with cloud platforms and big data technologies has also simplified deployment and scalability, making these solutions accessible to small and medium-sized enterprises (SMEs) as well as large organizations. This democratization of advanced analytics is creating new growth avenues for vendors and service providers.
The regulatory landscape and the increasing emphasis on data privacy and security are also shaping the development and adoption of Data Mining Tools. Compliance with frameworks such as GDPR, HIPAA, and CCPA necessitates robust data governance and transparent analytics processes. Vendors are responding by incorporating features like data masking, encryption, and audit trails into their solutions, thereby enhancing trust and adoption among regulated industries. Additionally, the emergence of industry-specific data mining applications, such as fraud detection in BFSI and predictive diagnostics in healthcare, is expanding the addressable market and fostering innovation.
From a regional perspective, North America currently dominates the Data Mining Tools market owing to the early adoption of advanced analytics, strong presence of leading technology vendors, and high investments in digital transformation. However, the Asia Pacific region is emerging as a lucrative market, driven by rapid industrialization, expansion of IT infrastructure, and growing awareness of data-driven decision-making in countries like China, India, and Japan. Europe, with its focus on data privacy and digital innovation, also represents a significant market share, while Latin America and the Middle East & Africa are witnessing steady growth as organizations in these regions modernize their operations and adopt cloud-based analytics solutions.
The Component segment of the Data Mining Tools market is bifurcated into Software and Services. Software remains the dominant segment, accounting for the majority of the market share in 2024. This dominance is attributed to the continuous evolution of data mining algorithms, the proliferation of user-friendly graphical interfaces, and the integration of advanced analytics capabilities such as machine learning, artificial intelligence, and natural language pro
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset with 72000 pins from 117 users in Pinterest. Each pin contains a short raw text and an image. The images are processed using a pretrained Convolutional Neural Network and transformed into a vector of 4096 features.
This dataset was used in the paper "User Identification in Pinterest Through the Refinement of a Cascade Fusion of Text and Images" to idenfity specific users given their comments. The paper is publishe in the Research in Computing Science Journal, as part of the LKE 2017 conference. The dataset includes the splits used in the paper.
There are nine files. text_test, text_train and text_val, contain the raw text of each pin in the corresponding split of the data. imag_test, imag_train and imag_val contain the image features of each pin in the corresponding split of the data. train_user and val_test_users contain the index of the user of each pin (between 0 and 116). There is a correspondance one-to-one among the test, train and validation files for images, text and users. There are 400 pins per user in the train set, and 100 pins per user in the validation and test sets each one.
If you have questions regarding the data, write to: jc dot gomez at ugto dot mx
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Companies in this industry develop software for data mining. Data mining is the process of extracting patterns from large data sets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LScDC Word-Category RIG MatrixApril 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk / suzenneslihan@hotmail.com)Supervised by Prof Alexander Gorban and Dr Evgeny MirkesGetting StartedThis file describes the Word-Category RIG Matrix for theLeicester Scientific Corpus (LSC) [1], the procedure to build the matrix and introduces the Leicester Scientific Thesaurus (LScT) with the construction process. The Word-Category RIG Matrix is a 103,998 by 252 matrix, where rows correspond to words of Leicester Scientific Dictionary-Core (LScDC) [2] and columns correspond to 252 Web of Science (WoS) categories [3, 4, 5]. Each entry in the matrix corresponds to a pair (category,word). Its value for the pair shows the Relative Information Gain (RIG) on the belonging of a text from the LSC to the category from observing the word in this text. The CSV file of Word-Category RIG Matrix in the published archive is presented with two additional columns of the sum of RIGs in categories and the maximum of RIGs over categories (last two columns of the matrix). So, the file ‘Word-Category RIG Matrix.csv’ contains a total of 254 columns.This matrix is created to be used in future research on quantifying of meaning in scientific texts under the assumption that words have scientifically specific meanings in subject categories and the meaning can be estimated by information gains from word to categories. LScT (Leicester Scientific Thesaurus) is a scientific thesaurus of English. The thesaurus includes a list of 5,000 words from the LScDC. We consider ordering the words of LScDC by the sum of their RIGs in categories. That is, words are arranged in their informativeness in the scientific corpus LSC. Therefore, meaningfulness of words evaluated by words’ average informativeness in the categories. We have decided to include the most informative 5,000 words in the scientific thesaurus. Words as a Vector of Frequencies in WoS CategoriesEach word of the LScDC is represented as a vector of frequencies in WoS categories. Given the collection of the LSC texts, each entry of the vector consists of the number of texts containing the word in the corresponding category.It is noteworthy that texts in a corpus do not necessarily belong to a single category, as they are likely to correspond to multidisciplinary studies, specifically in a corpus of scientific texts. In other words, categories may not be exclusive. There are 252 WoS categories and a text can be assigned to at least 1 and at most 6 categories in the LSC. Using the binary calculation of frequencies, we introduce the presence of a word in a category. We create a vector of frequencies for each word, where dimensions are categories in the corpus.The collection of vectors, with all words and categories in the entire corpus, can be shown in a table, where each entry corresponds to a pair (word,category). This table is build for the LScDC with 252 WoS categories and presented in published archive with this file. The value of each entry in the table shows how many times a word of LScDC appears in a WoS category. The occurrence of a word in a category is determined by counting the number of the LSC texts containing the word in a category. Words as a Vector of Relative Information Gains Extracted for CategoriesIn this section, we introduce our approach to representation of a word as a vector of relative information gains for categories under the assumption that meaning of a word can be quantified by their information gained for categories.For each category, a function is defined on texts that takes the value 1, if the text belongs to the category, and 0 otherwise. For each word, a function is defined on texts that takes the value 1 if the word belongs to the text, and 0 otherwise. Consider LSC as a probabilistic sample space (the space of equally probable elementary outcomes). For the Boolean random variables, the joint probability distribution, the entropy and information gains are defined.The information gain about the category from the word is the amount of information on the belonging of a text from the LSC to the category from observing the word in the text [6]. We used the Relative Information Gain (RIG) providing a normalised measure of the Information Gain. This provides the ability of comparing information gains for different categories. The calculations of entropy, Information Gains and Relative Information Gains can be found in the README file in the archive published. Given a word, we created a vector where each component of the vector corresponds to a category. Therefore, each word is represented as a vector of relative information gains. It is obvious that the dimension of vector for each word is the number of categories. The set of vectors is used to form the Word-Category RIG Matrix, in which each column corresponds to a category, each row corresponds to a word and each component is the relative information gain from the word to the category. In Word-Category RIG Matrix, a row vector represents the corresponding word as a vector of RIGs in categories. We note that in the matrix, a column vector represents RIGs of all words in an individual category. If we choose an arbitrary category, words can be ordered by their RIGs from the most informative to the least informative for the category. As well as ordering words in each category, words can be ordered by two criteria: sum and maximum of RIGs in categories. The top n words in this list can be considered as the most informative words in the scientific texts. For a given word, the sum and maximum of RIGs are calculated from the Word-Category RIG Matrix.RIGs for each word of LScDC in 252 categories are calculated and vectors of words are formed. We then form the Word-Category RIG Matrix for the LSC. For each word, the sum (S) and maximum (M) of RIGs in categories are calculated and added at the end of the matrix (last two columns of the matrix). The Word-Category RIG Matrix for the LScDC with 252 categories, the sum of RIGs in categories and the maximum of RIGs over categories can be found in the database.Leicester Scientific Thesaurus (LScT)Leicester Scientific Thesaurus (LScT) is a list of 5,000 words form the LScDC [2]. Words of LScDC are sorted in descending order by the sum (S) of RIGs in categories and the top 5,000 words are selected to be included in the LScT. We consider these 5,000 words as the most meaningful words in the scientific corpus. In other words, meaningfulness of words evaluated by words’ average informativeness in the categories and the list of these words are considered as a ‘thesaurus’ for science. The LScT with value of sum can be found as CSV file with the published archive. Published archive contains following files:1) Word_Category_RIG_Matrix.csv: A 103,998 by 254 matrix where columns are 252 WoS categories, the sum (S) and the maximum (M) of RIGs in categories (last two columns of the matrix), and rows are words of LScDC. Each entry in the first 252 columns is RIG from the word to the category. Words are ordered as in the LScDC.2) Word_Category_Frequency_Matrix.csv: A 103,998 by 252 matrix where columns are 252 WoS categories and rows are words of LScDC. Each entry of the matrix is the number of texts containing the word in the corresponding category. Words are ordered as in the LScDC.3) LScT.csv: List of words of LScT with sum (S) values. 4) Text_No_in_Cat.csv: The number of texts in categories. 5) Categories_in_Documents.csv: List of WoS categories for each document of the LSC.6) README.txt: Description of Word-Category RIG Matrix, Word-Category Frequency Matrix and LScT and forming procedures.7) README.pdf (same as 6 in PDF format)References[1] Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v2[2] Suzen, Neslihan (2019): LScDC (Leicester Scientific Dictionary-Core). figshare. Dataset. https://doi.org/10.25392/leicester.data.9896579.v3[3] Web of Science. (15 July). Available: https://apps.webofknowledge.com/[4] WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [5] Suzen, N., Mirkes, E. M., & Gorban, A. N. (2019). LScDC-new large scientific dictionary. arXiv preprint arXiv:1912.06858. [6] Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Any set of related activities that are executed in a repeatable manner and with a defined goal can be seen as process.
Process analytic approaches allow organizations to support the practice of Business Process Management and continuous improvement by leveraging all process-related data to extract knowledge, improve process performance and support managerial-decision making across the organization.
For organisations interested in continuous improvement, such datasets allow data-driven approach for identifying performance bottlenecks, reducing costs, extracting insights and optimizing the utilization of available resources. Understanding the properties of ‘current deployed process’ (whose execution trace is available), is critical to knowing whether it is worth investing in improvements, where performance problems exist, and how much variation there is in the process across the instances and what are the root-causes.
→ process of extracting valuable information from event logs/databases that are generated by processes.
Two topics are important i) process discovery where a process model describing the control flow is inferred from the data and ii) of conformance checking which deals with verifying that the behavior in the event log adheres to a set of business rules, e.g., defined as a process model. Rhese two use cases focus on the control-flow perspective,
→ identifying hidden nodes and bottlenecks in business processes.
A synthetic event log with 100,000 traces and 900,000 events that was generated by simulating a simple artificial process model. There are three data attributes in the event log: Priority, Nurse, and Type. Some paths in the model are recorded infrequently based on the value of these attributes.
Noise is added by randomly adding one additional event to an increasing number of traces. CPN Tools (http://cpntools.org) was used to generate the event log and inject the noise. The amount of noise can be controlled with the constant 'noise'.
The files test0 to test5 represent process traces and maybe used for debugging and sanity check purposes
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Improving the accuracy of prediction on future values based on the past and current observations has been pursued by enhancing the prediction's methods, combining those methods or performing data pre-processing. In this paper, another approach is taken, namely by increasing the number of input in the dataset. This approach would be useful especially for a shorter time series data. By filling the in-between values in the time series, the number of training set can be increased, thus increasing the generalization capability of the predictor. The algorithm used to make prediction is Neural Network as it is widely used in literature for time series tasks. For comparison, Support Vector Regression is also employed. The dataset used in the experiment is the frequency of USPTO's patents and PubMed's scientific publications on the field of health, namely on Apnea, Arrhythmia, and Sleep Stages. Another time series data designated for NN3 Competition in the field of transportation is also used for benchmarking. The experimental result shows that the prediction performance can be significantly increased by filling in-between data in the time series. Furthermore, the use of detrend and deseasonalization which separates the data into trend, seasonal and stationary time series also improve the prediction performance both on original and filled dataset. The optimal number of increase on the dataset in this experiment is about five times of the length of original dataset.
Facebook
Twitterhttps://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global Data Mining Software market is experiencing robust growth, driven by the increasing need for businesses to extract valuable insights from massive datasets. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated $45 billion by 2033. This expansion is fueled by several key factors. The burgeoning adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both large enterprises and SMEs. Furthermore, advancements in machine learning and artificial intelligence algorithms are enhancing the accuracy and efficiency of data mining processes, leading to better decision-making across various sectors like finance, healthcare, and marketing. The rise of big data analytics and the increasing availability of affordable, high-powered computing resources are also significant contributors to market growth. However, the market faces certain challenges. Data security and privacy concerns remain paramount, especially with the increasing volume of sensitive information being processed. The complexity of data mining software and the need for skilled professionals to operate and interpret the results present a barrier to entry for some businesses. The high initial investment cost associated with implementing sophisticated data mining solutions can also deter smaller organizations. Nevertheless, the ongoing technological advancements and the growing recognition of the strategic value of data-driven decision-making are expected to overcome these restraints and propel the market toward continued expansion. The market segmentation reveals a strong preference for cloud-based solutions, reflecting the industry's trend toward flexible and scalable IT infrastructure. Large enterprises currently dominate the market share, but SMEs are rapidly adopting data mining software, indicating promising future growth in this segment. Geographic analysis shows that North America and Europe are currently leading the market, but the Asia-Pacific region is poised for significant growth due to increasing digitalization and economic expansion in countries like China and India.
Facebook
Twitterhttps://www.zionmarketresearch.com/privacy-policyhttps://www.zionmarketresearch.com/privacy-policy
Global process mining software market is expected to revenue of around USD 41.74 billion by 2032, growing at a CAGR of around 42.86% between 2024-2032.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Due to increasing use of technology-enhanced educational assessment, data mining methods have been explored to analyse process data in log files from such assessment. However, most studies were limited to one data mining technique under one specific scenario. The current study demonstrates the usage of four frequently used supervised techniques, including Classification and Regression Trees (CART), gradient boosting, random forest, support vector machine (SVM), and two unsupervised methods, Self-organizing Map (SOM) and k-means, fitted to one assessment data. The USA sample (N = 426) from the 2012 Program for International Student Assessment (PISA) responding to problem-solving items is extracted to demonstrate the methods. After concrete feature generation and feature selection, classifier development procedures are implemented using the illustrated techniques. Results show satisfactory classification accuracy for all the techniques. Suggestions for the selection of classifiers are presented based on the research questions, the interpretability and the simplicity of the classifiers. Interpretations for the results from both supervised and unsupervised learning methods are provided.