100+ datasets found
  1. Data usage in consumer products and retail industry 2020

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data usage in consumer products and retail industry 2020 [Dataset]. https://www.statista.com/statistics/1262066/data-usage-in-consumer-products-and-retail-industry/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2020
    Area covered
    Worldwide
    Description

    A global survey from Capgemini showed that retail companies were lagging behind consumer products enterprises in the use of data. The gap was significant in the automation of processes and in data collecting: only ** percent of retailers automated data collection, against ** percent of consumer goods companies. However, one in **** organizations in both categories reported to have implemented practices involving data engineering, machine learning, and DevOps.

  2. Retail Data | Retail Sector in North America | Comprehensive Contact...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Retail Data | Retail Sector in North America | Comprehensive Contact Profiles | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-data-retail-sector-in-north-america-comprehensive-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    United States
    Description

    Success.ai’s Retail Data for the Retail Sector in North America offers a comprehensive dataset designed to connect businesses with key players across the diverse retail industry. Covering everything from department stores and supermarkets to specialty shops and e-commerce platforms, this dataset provides verified contact details, business locations, and leadership profiles for retail companies in the United States, Canada, and Mexico.

    With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, marketing, and business development efforts are powered by accurate, continuously updated, and AI-validated data.

    Backed by our Best Price Guarantee, this solution empowers businesses to thrive in North America’s competitive retail landscape.

    Why Choose Success.ai’s Retail Data for North America?

    1. Verified Contact Data for Precision Outreach

      • Access verified phone numbers, work emails, and LinkedIn profiles of retail executives, store managers, and decision-makers.
      • AI-driven validation ensures 99% accuracy, enabling confident communication and efficient campaign execution.
    2. Comprehensive Coverage Across Retail Segments

      • Includes profiles of retail businesses across major markets, from large department stores and grocery chains to boutique retailers and online platforms.
      • Gain insights into the operational dynamics of retail hubs in cities such as New York, Los Angeles, Toronto, and Mexico City.
    3. Continuously Updated Datasets

      • Real-time updates reflect leadership changes, new store openings, market expansions, and shifts in consumer preferences.
      • Stay aligned with evolving industry trends and emerging opportunities in the North American retail sector.
    4. Ethical and Compliant

      • Adheres to GDPR, CCPA, and other privacy regulations, ensuring responsible and lawful use of data in your campaigns.

    Data Highlights:

    • 170M+ Verified Professional Profiles: Engage with executives, marketing directors, and operations managers across the North American retail sector.
    • 30M Company Profiles: Access firmographic data, including revenue ranges, store counts, and geographic footprints.
    • Store Location Data: Pinpoint retail outlets, regional offices, and distribution centers to refine supply chain and marketing strategies.
    • Leadership Contact Details: Connect with CEOs, CMOs, and procurement officers influencing retail operations and vendor selections.

    Key Features of the Dataset:

    1. Retail Decision-Maker Profiles

      • Identify and engage with store owners, category managers, and marketing directors shaping customer experiences and product strategies.
      • Target professionals responsible for inventory planning, vendor contracts, and store performance.
    2. Advanced Filters for Precision Targeting

      • Filter companies by industry segment (luxury, grocery, e-commerce), geographic location, company size, or revenue range.
      • Tailor outreach to align with regional market trends, customer demographics, and operational priorities.
    3. Market Trends and Operational Insights

      • Analyze trends such as online shopping growth, sustainability practices, and supply chain optimization.
      • Leverage insights to refine product offerings, identify partnership opportunities, and design effective campaigns.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data enable personalized messaging, highlight unique value propositions, and enhance engagement outcomes.

    Strategic Use Cases:

    1. Sales and Lead Generation

      • Present products, services, or technology solutions to retail procurement teams, marketing departments, and operations managers.
      • Build relationships with retailers seeking innovative tools, efficient supply chain solutions, or unique product offerings.
    2. Market Research and Consumer Insights

      • Analyze retail trends, customer behaviors, and seasonal demands to inform marketing strategies and product launches.
      • Benchmark against competitors to identify gaps, emerging niches, and growth opportunities.
    3. E-Commerce and Digital Strategy Development

      • Target e-commerce managers and digital transformation teams driving online retail initiatives and omnichannel integration.
      • Offer solutions to enhance online shopping experiences, logistics, and customer loyalty programs.
    4. Recruitment and Workforce Solutions

      • Engage HR professionals and hiring managers in recruiting talent for store operations, customer service, or marketing roles.
      • Provide workforce optimization tools, training platforms, or staffing services tailored to retail environments.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality retail data at competitive prices, ensuring strong ROI for your marketing and outreach efforts in North America.
    2. Seamless Integration
      ...

  3. e

    Earnest Analytics Retail Pricing Web Data

    • earnestanalytics.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earnest Analytics (2023). Earnest Analytics Retail Pricing Web Data [Dataset]. https://www.earnestanalytics.com/datasets/retail-pricing
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    Earnest Analytics
    Area covered
    US
    Description

    Gain insight into product margins through web-sourced product availability and discounting data for beauty, fashion, and household brands. Retail pricing data is sourced from dozens of US online retailers.

  4. Retail Transactions Dataset

    • kaggle.com
    Updated May 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasad Patil (2024). Retail Transactions Dataset [Dataset]. https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Prasad Patil
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:

    Context:

    Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.

    Inspiration:

    The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.

    Dataset Information:

    The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:

    • Transaction_ID: A unique identifier for each transaction, represented as a 10-digit number. This column is used to uniquely identify each purchase.
    • Date: The date and time when the transaction occurred. It records the timestamp of each purchase.
    • Customer_Name: The name of the customer who made the purchase. It provides information about the customer's identity.
    • Product: A list of products purchased in the transaction. It includes the names of the products bought.
    • Total_Items: The total number of items purchased in the transaction. It represents the quantity of products bought.
    • Total_Cost: The total cost of the purchase, in currency. It represents the financial value of the transaction.
    • Payment_Method: The method used for payment in the transaction, such as credit card, debit card, cash, or mobile payment.
    • City: The city where the purchase took place. It indicates the location of the transaction.
    • Store_Type: The type of store where the purchase was made, such as a supermarket, convenience store, department store, etc.
    • Discount_Applied: A binary indicator (True/False) representing whether a discount was applied to the transaction.
    • Customer_Category: A category representing the customer's background or age group.
    • Season: The season in which the purchase occurred, such as spring, summer, fall, or winter.
    • Promotion: The type of promotion applied to the transaction, such as "None," "BOGO (Buy One Get One)," or "Discount on Selected Items."

    Use Cases:

    • Market Basket Analysis: Discover associations between products and uncover buying patterns.
    • Customer Segmentation: Group customers based on purchasing behavior.
    • Pricing Optimization: Optimize pricing strategies and identify opportunities for discounts and promotions.
    • Retail Analytics: Analyze store performance and customer trends.

    Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.

  5. d

    Retail Store Data: Accurate Places Data | Global | Location Data on 52M+...

    • datarade.ai
    .csv
    Updated Aug 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SafeGraph (2024). Retail Store Data: Accurate Places Data | Global | Location Data on 52M+ Places [Dataset]. https://datarade.ai/data-products/retail-store-data-accurate-places-data-global-location-d-safegraph
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset authored and provided by
    SafeGraph
    Area covered
    United Kingdom, United States of America, Canada
    Description

    SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).

    SafeGraph Places is a point of interest (POI) data offering with varying coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.

    SafeGraph provides clean and accurate geospatial datasets on 52M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation.

  6. T

    US Retail Sales

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). US Retail Sales [Dataset]. https://tradingeconomics.com/united-states/retail-sales
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 1992 - Jun 30, 2025
    Area covered
    United States
    Description

    Retail Sales in the United States increased 0.60 percent in June of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  7. c

    Vision Competitor Intelligence & Analysis | Retail Data & Ecommerce Product...

    • dataproducts.consumeredge.com
    Updated Aug 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2024). Vision Competitor Intelligence & Analysis | Retail Data & Ecommerce Product Data | US Commerce Transaction Data | 100M+ Cards, 12K+ Merchants [Dataset]. https://dataproducts.consumeredge.com/products/consumer-edge-vision-competitor-intelligence-analysis-ret-consumer-edge
    Explore at:
    Dataset updated
    Aug 16, 2024
    Dataset authored and provided by
    Consumer Edge
    Area covered
    United States
    Description

    CE Vision USA is the premier data set tracking consumer spend on credit and debit cards. Private investors and corporate clients use CE Vision retail commerce data for competitor analysis, market share, cross-shopping, demographics, and market share data by industry and channel.

  8. Grocery Data | Food Data | Food & Grocery Data | Industry Data | Grocery POI...

    • datarade.ai
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MealMe (2025). Grocery Data | Food Data | Food & Grocery Data | Industry Data | Grocery POI and SKU Level Product Data from 1M+ Locations with Prices [Dataset]. https://datarade.ai/data-products/grocery-data-food-data-food-grocery-data-industry-dat-mealme
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    MealMe, Inc.
    Authors
    MealMe
    Area covered
    Sao Tome and Principe, Kiribati, Tajikistan, Belarus, Tonga, Lesotho, Honduras, French Polynesia, India, Chile
    Description

    MealMe provides comprehensive grocery and retail SKU-level product data, including real-time pricing, from the top 100 retailers in the USA and Canada. Our proprietary technology ensures accurate and up-to-date insights, empowering businesses to excel in competitive intelligence, pricing strategies, and market analysis.

    Retailers Covered: MealMe’s database includes detailed SKU-level data and pricing from leading grocery and retail chains such as Walmart, Target, Costco, Kroger, Safeway, Publix, Whole Foods, Aldi, ShopRite, BJ’s Wholesale Club, Sprouts Farmers Market, Albertsons, Ralphs, Pavilions, Gelson’s, Vons, Shaw’s, Metro, and many more. Our coverage spans the most influential retailers across North America, ensuring businesses have the insights needed to stay competitive in dynamic markets.

    Key Features: SKU-Level Granularity: Access detailed product-level data, including product descriptions, categories, brands, and variations. Real-Time Pricing: Monitor current pricing trends across major retailers for comprehensive market comparisons. Regional Insights: Analyze geographic price variations and inventory availability to identify trends and opportunities. Customizable Solutions: Tailored data delivery options to meet the specific needs of your business or industry. Use Cases: Competitive Intelligence: Gain visibility into pricing, product availability, and assortment strategies of top retailers like Walmart, Costco, and Target. Pricing Optimization: Use real-time data to create dynamic pricing models that respond to market conditions. Market Research: Identify trends, gaps, and consumer preferences by analyzing SKU-level data across leading retailers. Inventory Management: Streamline operations with accurate, real-time inventory availability. Retail Execution: Ensure on-shelf product availability and compliance with merchandising strategies. Industries Benefiting from Our Data CPG (Consumer Packaged Goods): Optimize product positioning, pricing, and distribution strategies. E-commerce Platforms: Enhance online catalogs with precise pricing and inventory information. Market Research Firms: Conduct detailed analyses to uncover industry trends and opportunities. Retailers: Benchmark against competitors like Kroger and Aldi to refine assortments and pricing. AI & Analytics Companies: Fuel predictive models and business intelligence with reliable SKU-level data. Data Delivery and Integration MealMe offers flexible integration options, including APIs and custom data exports, for seamless access to real-time data. Whether you need large-scale analysis or continuous updates, our solutions scale with your business needs.

    Why Choose MealMe? Comprehensive Coverage: Data from the top 100 grocery and retail chains in North America, including Walmart, Target, and Costco. Real-Time Accuracy: Up-to-date pricing and product information ensures competitive edge. Customizable Insights: Tailored datasets align with your specific business objectives. Proven Expertise: Trusted by diverse industries for delivering actionable insights. MealMe empowers businesses to unlock their full potential with real-time, high-quality grocery and retail data. For more information or to schedule a demo, contact us today!

  9. Nielsen Retail Scanner Dataset

    • archive.ciser.cornell.edu
    Updated Feb 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A.C. Nielsen Company (2024). Nielsen Retail Scanner Dataset [Dataset]. https://archive.ciser.cornell.edu/studies/2877
    Explore at:
    Dataset updated
    Feb 23, 2024
    Dataset provided by
    NielsenIQhttp://nielseniq.com/
    Nielsen Holdingshttp://nielsen.com/
    Authors
    A.C. Nielsen Company
    Variables measured
    EventOrProcess
    Description

    Retail Scanner Data consist of weekly pricing, volume, and store environment information generated by point-of-sale systems from more than 90 participating retail chains across all US markets.

    Store Demographics: Includes store chain code, channel type, and area location. Retailer names are masked to protect identity.

    Weekly Product Data: For each UPC code, participating stores report units, price, price multiplier, baseline units, baseline price, feature indicator, and display indicator. Products: Weekly product data for 2.6-4.5* million UPCs including food, nonfood grocery items, health and beauty aids, and select general merchandise aggregated into 1,100 product categories store environment variables (i.e., feature and display indicators) from a subset of stores. The 1,100 product categories are categorized into 125 product groups and 10 departments. The structure matches that of the consumer panel data. All private-label goods have a masked UPC to protect the identity of the retailers.

    Product Characteristics: All products include UPC code and description, brand, multipack, and size, as well as NielsenIQ codes for department, product group, and product module. Some products contain additional characteristics (e.g., flavor).

    Geographies: Scanner Data from 35,000-50,000* participating grocery, drug, mass merchandiser, and other stores, covering more than half the total sales volume of US grocery and drug stores and more than 30 percent of all US mass merchandiser sales volume. Data cover the entire United States, divided into 52 major markets, and include the same codes as those used in the consumer panel data.

    Retail Channels: Food, drug, mass merchandise, convenience, and liquor.

  10. SKU-Level Transaction Data | Point-of-Sale (POS) Data | 1M+ Grocery,...

    • datarade.ai
    Updated Jan 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MealMe (2025). SKU-Level Transaction Data | Point-of-Sale (POS) Data | 1M+ Grocery, Restaurant, and Retail stores stores with SKU level transactions [Dataset]. https://datarade.ai/data-products/sku-level-transaction-data-point-of-sale-pos-data-1m-g-mealme
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    MealMe, Inc.
    Authors
    MealMe
    Area covered
    Indonesia, Kosovo, Japan, Slovenia, Swaziland, Åland Islands, Ecuador, Moldova (Republic of), New Zealand, Ghana
    Description

    MealMe provides comprehensive grocery and retail SKU-level product data, including real-time pricing, from the top 100 retailers in the USA and Canada. Our proprietary technology ensures accurate and up-to-date insights, empowering businesses to excel in competitive intelligence, pricing strategies, and market analysis.

    Retailers Covered: MealMe’s database includes detailed SKU-level data and pricing from leading grocery and retail chains such as Walmart, Target, Costco, Kroger, Safeway, Publix, Whole Foods, Aldi, ShopRite, BJ’s Wholesale Club, Sprouts Farmers Market, Albertsons, Ralphs, Pavilions, Gelson’s, Vons, Shaw’s, Metro, and many more. Our coverage spans the most influential retailers across North America, ensuring businesses have the insights needed to stay competitive in dynamic markets.

    Key Features: SKU-Level Granularity: Access detailed product-level data, including product descriptions, categories, brands, and variations. Real-Time Pricing: Monitor current pricing trends across major retailers for comprehensive market comparisons. Regional Insights: Analyze geographic price variations and inventory availability to identify trends and opportunities. Customizable Solutions: Tailored data delivery options to meet the specific needs of your business or industry. Use Cases: Competitive Intelligence: Gain visibility into pricing, product availability, and assortment strategies of top retailers like Walmart, Costco, and Target. Pricing Optimization: Use real-time data to create dynamic pricing models that respond to market conditions. Market Research: Identify trends, gaps, and consumer preferences by analyzing SKU-level data across leading retailers. Inventory Management: Streamline operations with accurate, real-time inventory availability. Retail Execution: Ensure on-shelf product availability and compliance with merchandising strategies. Industries Benefiting from Our Data CPG (Consumer Packaged Goods): Optimize product positioning, pricing, and distribution strategies. E-commerce Platforms: Enhance online catalogs with precise pricing and inventory information. Market Research Firms: Conduct detailed analyses to uncover industry trends and opportunities. Retailers: Benchmark against competitors like Kroger and Aldi to refine assortments and pricing. AI & Analytics Companies: Fuel predictive models and business intelligence with reliable SKU-level data. Data Delivery and Integration MealMe offers flexible integration options, including APIs and custom data exports, for seamless access to real-time data. Whether you need large-scale analysis or continuous updates, our solutions scale with your business needs.

    Why Choose MealMe? Comprehensive Coverage: Data from the top 100 grocery and retail chains in North America, including Walmart, Target, and Costco. Real-Time Accuracy: Up-to-date pricing and product information ensures competitive edge. Customizable Insights: Tailored datasets align with your specific business objectives. Proven Expertise: Trusted by diverse industries for delivering actionable insights. MealMe empowers businesses to unlock their full potential with real-time, high-quality grocery and retail data. For more information or to schedule a demo, contact us today!

  11. ASOS Fashion products data

    • dataandsons.com
    csv, zip
    Updated Jun 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    crawl feeds (2022). ASOS Fashion products data [Dataset]. https://www.dataandsons.com/categories/product-lists/asos-fashion-products-data
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 25, 2022
    Dataset provided by
    Authors
    crawl feeds
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Jun 25, 2022
    Description

    About this Dataset

    ASOS is fashion retailer. Crawl Feeds team extracted more than 100K+ fashion products from ASOS US along with 25 datapoints. Dataset available in CSV Format. Last extracted on 26 Jun 2022.

    Category

    Product Lists

    Keywords

    ecoomerce,fashion data,fashion Ecommerce data,retail

    Row Count

    4001

    Price

    $130.00

  12. Product Information Management Market Analysis North America, Europe, APAC,...

    • technavio.com
    Updated Dec 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2023). Product Information Management Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, Japan, Germany, UK - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/product-information-management-market-industry-analysis
    Explore at:
    Dataset updated
    Dec 9, 2023
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Product Information Management Market Size 2024-2028

    The product information management market size is forecast to increase by USD 10.87 bn at a CAGR of 14.37% between 2023 and 2028.

    The Product Information Management (PIM) market is experiencing significant growth, driven by the thriving e-commerce industry's increasing demand for efficient and accurate product data management. To meet this demand, companies are adopting advanced technologies such as artificial intelligence (AI) and machine learning to enhance data management capabilities and improve consumer experiences. However, with the increasing adoption of these technologies comes the challenge of ensuring data security and privacy. Cloud computing solutions are gaining popularity In the PIM market due to their flexibility and scalability, allowing businesses to store and manage large amounts of data securely. Additionally, the integration of augmented reality (AR) technology in PIM systems is expected to revolutionize the way products are presented and marketed online, providing a more immersive shopping experience for consumers.Overall, the PIM market is poised for continued growth as businesses seek to streamline their product data management processes and enhance consumer engagement.

    What will be the Size of the Product Information Management Market During the Forecast Period?

    Request Free SampleThe Product Information Management (PIM) market encompasses solutions that help businesses manage and syndicate accurate and consistent product data across multiple channels, including ecommerce platforms and retailers. With the increasing importance of omnichannel sales strategies, the demand for PIM systems has surged. These solutions enable the management of critical product data such as ingredients, weights, colors, and product specifications, ensuring retailers and wholesalers receive up-to-date, high-quality information. Cloud-based PIM systems offer automation capabilities, reducing manual data entry and improving data accuracy. Security frameworks are essential to protect sensitive product information. The consumer goods industry, in particular, benefits significantly from PIM solutions, as they help maintain product consistency and enhance the overall shopping experience.Artificial intelligence and machine learning technologies are increasingly integrated into PIM systems, further improving data enrichment and enabling more efficient data management.

    How is this Product Information Management Industry segmented and which is the largest segment?

    The product information management industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments. DeploymentOn-premisesCloudEnd-userLarge enterprisesSMEsGeographyNorth AmericaUSEuropeGermanyUKAPACChinaJapanSouth AmericaMiddle East and Africa

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period. Product Information Management (PIM) refers to on-premises software solutions installed and managed on a company's servers, requiring a license and in-house resources for care and integration. This approach necessitates specialized personnel for handling obligations and involves significant project installation considerations, such as infrastructure assessment, LAN/WAN bandwidth impact, access decisions, and internal approvals. In larger-scale deployments or complex infrastructures, a Systems Integrator may be engaged. The adoption of an on-premises PIM system necessitates a substantial investment in resources and internal capabilities. PIM plays a crucial role in data syndication for eCommerce industries, ensuring consistency and quality across omnichannel syndication, including retailers and wholesalers.It facilitates the management of product content, including ingredients, weights, colors, and product specifications. Security frameworks are essential for safeguarding sensitive data, and cloud-based solutions and automation offer scalability and efficiency. Industry verticals, such as consumer goods and retail, significantly benefit from PIM systems, enhancing the customer experience and omnichannel experience, driving online shopping sales, and catering to small companies undergoing digitalization. The eCommerce industry's shift towards multi-cloud approaches and hybrid cloud strategies necessitates PIM systems' integration with eCommerce systems, Enterprise Resource Planning, Customer Relationship Management, product catalogs, downstream channels, IT service teams, marketing channels, and security and privacy considerations.Data enrichment through Artificial Intelligence and Augmented Reality (AR) further enhances the value proposition of PIM systems.

    Get a glance at the market report of various segmen

  13. Retail Analytics Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Jun 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Retail Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/retail-analytics-market-analysis
    Explore at:
    Dataset updated
    Jun 14, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Retail Analytics Market Size 2025-2029

    The retail analytics market size is forecast to increase by USD 28.47 billion, at a CAGR of 29.5% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing volume and complexity of data generated by retail businesses. This data deluge offers valuable insights for retailers, enabling them to optimize operations, enhance customer experience, and make data-driven decisions. However, this trend also presents challenges. One of the most pressing issues is the increasing adoption of Artificial Intelligence (AI) in the retail sector. While AI brings numerous benefits, such as personalized marketing and improved supply chain management, it also raises privacy and security concerns among customers.
    Retailers must address these concerns through transparent data handling practices and robust security measures to maintain customer trust and loyalty. Navigating these challenges requires a strategic approach, with a focus on data security, customer privacy, and effective implementation of AI technologies. Companies that successfully harness the power of retail analytics while addressing these challenges will gain a competitive edge in the market.
    

    What will be the Size of the Retail Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    The market continues to evolve, driven by the constant need for businesses to gain insights from their data and adapt to shifting consumer behaviors. Entities such as text analytics, data quality, price optimization, customer journey mapping, mobile analytics, time series analysis, regression analysis, social media analytics, data mining, historical data analysis, and data cleansing are integral components of this dynamic landscape. Text analytics uncovers hidden patterns and trends in unstructured data, while data quality ensures the accuracy and consistency of information. Price optimization leverages historical data to determine optimal pricing strategies, and customer journey mapping provides insights into the customer experience.

    Mobile analytics caters to the growing number of mobile shoppers, and time series analysis identifies trends and patterns over time. Regression analysis uncovers relationships between variables, social media analytics monitors brand sentiment, and data mining uncovers hidden patterns and correlations. Historical data analysis informs strategic decision-making, and data cleansing prepares data for analysis. Customer feedback analysis provides valuable insights into customer satisfaction, and association rule mining uncovers relationships between customer behaviors and purchases. Predictive analytics anticipates future trends, real-time analytics delivers insights in real-time, and market basket analysis uncovers relationships between products. Data security safeguards sensitive information, machine learning (ML) and artificial intelligence (AI) enhance data analysis capabilities, and cloud-based analytics offers flexibility and scalability.

    Business intelligence (BI) and open-source analytics provide comprehensive data analysis solutions, while inventory management and supply chain optimization streamline operations. Data governance ensures data is used ethically and effectively, and loyalty programs and A/B testing optimize customer engagement and retention. Seasonality analysis accounts for seasonal trends, and trend analysis identifies emerging trends. Data integration connects disparate data sources, and clickstream analysis tracks user behavior on websites. In the ever-changing retail landscape, these entities are seamlessly integrated into retail analytics solutions, enabling businesses to stay competitive and adapt to evolving market dynamics.

    How is this Retail Analytics Industry segmented?

    The retail analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      In-store operation
      Customer management
      Supply chain management
      Marketing and merchandizing
      Others
    
    
    Component
    
      Software
      Services
    
    
    Deployment
    
      Cloud-based
      On-premises
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Application Insights

    The in-store operation segment is estimated to witness significant growth during the forecast period. In the realm of retail, the in-store operation segment of the market plays a pivotal role in optimizing brick-and-mortar retail operations. This segment encompasses various data analytics applications with

  14. c

    Walmart basic product details dataset

    • crawlfeeds.com
    csv, zip
    Updated Jul 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2024). Walmart basic product details dataset [Dataset]. https://crawlfeeds.com/datasets/walmart-basic-product-details-dataset
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jul 28, 2024
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Get access to the Walmart Basic Product Details Dataset, which includes essential information on a wide range of products available at Walmart.

    This comprehensive dataset features product names, categories, descriptions, prices, and more. Ideal for market analysis, competitive research, and e-commerce applications.

    Download now to enhance your data-driven strategies and insights with detailed Walmart product information.

    The dataset having basic details of a dataset like title, id, image, price and descripton.

    Records count: 2.5 million +

  15. c

    Farfetch fashion retail products dataset

    • crawlfeeds.com
    csv, zip
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Farfetch fashion retail products dataset [Dataset]. https://crawlfeeds.com/datasets/farfetch-fashion-retail-products-dataset
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Unlock a curated dataset of 18,000+ fashion products from Farfetch, a leading global fashion platform. This dataset covers high-end and emerging designer brands across men's, women's, and unisex categories — perfect for powering retail analytics, trend detection, and AI-driven fashion applications.

    Whether you're building a product matching engine, conducting price intelligence, or training recommendation systems, this structured dataset gives you direct insight into global luxury retail at scale.

    Delivered clean, deduplicated, and crawl-ready, it supports both market researchers and developers working in ecommerce, fashion tech, or retail platforms.

    Use Cases

    • Competitive price analysis and product benchmarking

    • Fashion trend prediction and forecasting

    • Retail catalog enrichment or matching

    • Cross-platform brand visibility comparison

    • AI/ML model training (e.g., recommendation engines)

    • Inventory and availability tracking for luxury fashion

  16. Russia Retail Trade: Product Inventory

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Russia Retail Trade: Product Inventory [Dataset]. https://www.ceicdata.com/en/russia/retail-sales-product-inventory-and-inventories-index/retail-trade-product-inventory
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2018 - Jan 1, 2019
    Area covered
    Russia
    Variables measured
    Domestic Trade
    Description

    Russia Retail Trade: Product Inventory data was reported at 1,637.800 RUB bn in Jan 2019. This records a decrease from the previous number of 1,779.700 RUB bn for Dec 2018. Russia Retail Trade: Product Inventory data is updated monthly, averaging 229.000 RUB bn from Jan 1992 (Median) to Jan 2019, with 325 observations. The data reached an all-time high of 1,779.700 RUB bn in Dec 2018 and a record low of 0.102 RUB bn in Jan 1992. Russia Retail Trade: Product Inventory data remains active status in CEIC and is reported by Federal State Statistics Service. The data is categorized under Global Database’s Russian Federation – Table RU.RJB005: Retail Sales: Product Inventory and Inventories Index.

  17. e

    Earnest Analytics Scanner Consumer Packaged Goods (CPG) Data

    • earnestanalytics.com
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earnest Analytics (2023). Earnest Analytics Scanner Consumer Packaged Goods (CPG) Data [Dataset]. https://www.earnestanalytics.com/datasets/scanner-consumer-packaged-goods-cpg
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset authored and provided by
    Earnest Analytics
    Area covered
    US
    Description

    Track share of shelf, predict revenue surprises, and drill down into brand and category level performance by household demography across thousands of brands and hundreds of manufacturers. Scanner Consumer Packaged Goods (CPG) data is sourced from thousands of retail stores and millions of underlying US households across grocery and drugstore chains. Available exclusively to investors.

  18. China Retail Price Index: Urban: Food: Milk and Its Product

    • ceicdata.com
    Updated Jun 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). China Retail Price Index: Urban: Food: Milk and Its Product [Dataset]. https://www.ceicdata.com/en/china/retail-price-index-urban-annual/retail-price-index-urban-food-milk-and-its-product
    Explore at:
    Dataset updated
    Jun 15, 2020
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    China
    Variables measured
    Domestic Trade Price
    Description

    China Retail Price Index: Urban: Food: Milk and Its Product data was reported at 101.000 Prev Year=100 in 2022. This records a decrease from the previous number of 102.100 Prev Year=100 for 2021. China Retail Price Index: Urban: Food: Milk and Its Product data is updated yearly, averaging 101.300 Prev Year=100 from Dec 1994 (Median) to 2022, with 29 observations. The data reached an all-time high of 134.300 Prev Year=100 in 1994 and a record low of 98.845 Prev Year=100 in 2015. China Retail Price Index: Urban: Food: Milk and Its Product data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Inflation – Table CN.IB: Retail Price Index: Urban: Annual.

  19. Retail Store Data | Retail & E-commerce Sector in Asia | Verified Business...

    • datarade.ai
    Updated Feb 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2018). Retail Store Data | Retail & E-commerce Sector in Asia | Verified Business Profiles & eCommerce Professionals | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-store-data-retail-e-commerce-sector-in-asia-veri-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 12, 2018
    Dataset provided by
    Area covered
    Hong Kong, Lebanon, Georgia, Jordan, Malaysia, Kuwait, Singapore, Cyprus, Bangladesh, Turkmenistan
    Description

    Success.ai delivers unparalleled access to Retail Store Data for Asia’s retail and e-commerce sectors, encompassing subcategories such as ecommerce data, ecommerce merchant data, ecommerce market data, and company data. Whether you’re targeting emerging markets or established players, our solutions provide the tools to connect with decision-makers, analyze market trends, and drive strategic growth. With continuously updated datasets and AI-validated accuracy, Success.ai ensures your data is always relevant and reliable.

    Key Features of Success.ai's Retail Store Data for Retail & E-commerce in Asia:

    Extensive Business Profiles: Access detailed profiles for 70M+ companies across Asia’s retail and e-commerce sectors. Profiles include firmographic data, revenue insights, employee counts, and operational scope.

    Ecommerce Data: Gain insights into online marketplaces, customer demographics, and digital transaction patterns to refine your strategies.

    Ecommerce Merchant Data: Understand vendor performance, supply chain metrics, and operational details to optimize partnerships.

    Ecommerce Market Data: Analyze purchasing trends, regional preferences, and market demands to identify growth opportunities.

    Contact Data for Decision-Makers: Reach key stakeholders, such as CEOs, marketing executives, and procurement managers. Verified contact details include work emails, phone numbers, and business addresses.

    Real-Time Accuracy: AI-powered validation ensures a 99% accuracy rate, keeping your outreach efforts efficient and impactful.

    Compliance and Ethics: All data is ethically sourced and fully compliant with GDPR and other regional data protection regulations.

    Why Choose Success.ai for Retail Store Data?

    Best Price Guarantee: We deliver industry-leading value with the most competitive pricing for comprehensive retail store data.

    Customizable Solutions: Tailor your data to meet specific needs, such as targeting particular regions, industries, or company sizes.

    Scalable Access: Our data solutions are built to grow with your business, supporting small startups to large-scale enterprises.

    Seamless Integration: Effortlessly incorporate our data into your existing CRM, marketing, or analytics platforms.

    Comprehensive Use Cases for Retail Store Data:

    1. Market Entry and Expansion:

    Identify potential partners, distributors, and clients to expand your footprint in Asia’s dynamic retail and e-commerce markets. Use detailed profiles to assess market opportunities and risks.

    1. Personalized Marketing Campaigns:

    Leverage ecommerce data and consumer insights to craft highly targeted campaigns. Connect directly with decision-makers for precise and effective communication.

    1. Competitive Benchmarking:

    Analyze competitors’ operations, market positioning, and consumer strategies to refine your business plans and gain a competitive edge.

    1. Supplier and Vendor Selection:

    Evaluate potential suppliers or vendors using ecommerce merchant data, including financial health, operational details, and contact data.

    1. Customer Engagement and Retention:

    Enhance customer loyalty programs and retention strategies by leveraging ecommerce market data and purchasing trends.

    APIs to Amplify Your Results:

    Enrichment API: Keep your CRM and analytics platforms up-to-date with real-time data enrichment, ensuring accurate and actionable company profiles.

    Lead Generation API: Maximize your outreach with verified contact data for retail and e-commerce decision-makers. Ideal for driving targeted marketing and sales efforts.

    Tailored Solutions for Industry Professionals:

    Retailers: Expand your supply chain, identify new markets, and connect with key partners in the e-commerce ecosystem.

    E-commerce Platforms: Optimize your vendor and partner selection with verified profiles and operational insights.

    Marketing Agencies: Deliver highly personalized campaigns by leveraging detailed consumer data and decision-maker contacts.

    Consultants: Provide data-driven recommendations to clients with access to comprehensive company data and market trends.

    What Sets Success.ai Apart?

    70M+ Business Profiles: Access an extensive and detailed database of companies across Asia’s retail and e-commerce sectors.

    Global Compliance: All data is sourced ethically and adheres to international data privacy standards, including GDPR.

    Real-Time Updates: Ensure your data remains accurate and relevant with our continuously updated datasets.

    Dedicated Support: Our team of experts is available to help you maximize the value of our data solutions.

    Empower Your Business with Success.ai:

    Success.ai’s Retail Store Data for the retail and e-commerce sectors in Asia provides the insights and connections needed to thrive in this competitive market. Whether you’re entering a new region, launching a targeted campaign, or analyzing market trends, our data solutions ensure measurable success.

    ...

  20. B

    Annual Retail Store Data, 2000 [Canada] [Excel]

    • borealisdata.ca
    • dataverse.scholarsportal.info
    • +1more
    Updated Sep 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Annual Retail Store Data, 2000 [Canada] [Excel] [Dataset]. http://doi.org/10.5683/SP3/TUQXW4
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 28, 2023
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4https://borealisdata.ca/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.5683/SP3/TUQXW4

    Area covered
    Canada
    Description

    The annual Retail store data CD-ROM is an easy-to-use tool for quickly discovering retail trade patterns and trends. The current product presents results from the 1999 and 2000 Annual Retail Store and Annual Retail Chain surveys. This product contains numerous cross-classified data tables using the North American Industry Classification System (NAICS). The data tables provide access to a wide range of financial variables, such as revenues, expenses, inventory, sales per square footage (chain stores only) and the number of stores. Most data tables contain detailed information on industry (as low as 5-digit NAICS codes), geography (Canada, provinces and territories) and store type (chains, independents, franchises). The electronic product also contains survey metadata, questionnaires, information on industry codes and definitions, and the list of retail chain store respondents.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Data usage in consumer products and retail industry 2020 [Dataset]. https://www.statista.com/statistics/1262066/data-usage-in-consumer-products-and-retail-industry/
Organization logo

Data usage in consumer products and retail industry 2020

Explore at:
Dataset updated
Jun 26, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Aug 2020
Area covered
Worldwide
Description

A global survey from Capgemini showed that retail companies were lagging behind consumer products enterprises in the use of data. The gap was significant in the automation of processes and in data collecting: only ** percent of retailers automated data collection, against ** percent of consumer goods companies. However, one in **** organizations in both categories reported to have implemented practices involving data engineering, machine learning, and DevOps.

Search
Clear search
Close search
Google apps
Main menu