Facebook
TwitterThe Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterFull Landscape Project v3.4 (Please note that this file is large, ~600mb, and may take a long time to download on slower internet connections):File Geodatabase (NJ State Plane NAD 1983) download: Click hereLandscape Regions (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click hereAtlantic Coastal Habitat (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click hereDelaware Bay Habitat (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click hereMarine Habitat (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click herePiedmont Habitat (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click herePinelands Habitat (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click hereSkylands Habitat (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click hereStream Habitat (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click hereVernal Pools and Vernal Habitats (Landscape Project v3.4):File Geodatabase (NJ State Plane NAD 1983) download: Click hereArcGIS Online: Click hereLandscape Project data are easily accessible and can be integrated with the planning, protection and land management programs of non-government organizations and private landowners and at every level of government- federal, state, county and municipal. Landscape maps and overlays provide a basis for proactive planning, such as the development of local habitat protection ordinances, zoning to protect critical wildlife areas, management guidelines for imperiled species conservation on public and private lands, and land acquisition projects. Most importantly, the information that is readily available in the Landscape Project can be used for planning purposes before any actions such as proposed development, resource extraction (e.g. timber harvests) or conservation measures occur. The maps help increase predictability for local planners, environmental commissions, and developers and help facilitate local land use decisions that appropriately site and balance development and habitat protection. The Landscape Project maps allow the regulated public to anticipate potential environmental regulation in an area and provide some level of assurance regarding areas where endangered, threatened or species of special concern are not likely to occur, affording predictability to the application and development process. Thus, Landscape Project maps can be used proactively by regulators, planners and the regulated public in order to minimize conflict and protect species. This minimizes time and money spent attempting to resolve after-the-fact endangered and threatened species issues.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
New project plans are no longer accepted. Project Plan amendments are the only form of Project Plan that is still reviewed. Before submitting an application, applicants must meet with planning staff and receive an amendment checklist that outlines the required submission items. A Project Plan sets the development density, height limit, and public amenities for optional method projects in the CBD zones under the 2004 Zoning Ordinance. For further details: https://montgomeryplanning.org/development/development-applications/project-plan/ For more information, contact: GIS Manager Information Technology & Innovation (ITI) Montgomery County Planning Department, MNCPPC T: 301-650-5620
Facebook
TwitterThe files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. We converted the photointerpreted data into a format usable in a geographic information system (GIS) by employing three fundamental processes: (1) orthorectify, (2) digitize, and (3) develop the geodatabase. All digital map automation was projected in Universal Transverse Mercator (UTM), Zone 16, using the North American Datum of 1983 (NAD83). Orthorectify: We orthorectified the interpreted overlays by using OrthoMapper, a softcopy photogrammetric software for GIS. One function of OrthoMapper is to create orthorectified imagery from scanned and unrectified imagery (Image Processing Software, Inc., 2002). The software features a method of visual orientation involving a point-and-click operation that uses existing orthorectified horizontal and vertical base maps. Of primary importance to us, OrthoMapper also has the capability to orthorectify the photointerpreted overlays of each photograph based on the reference information provided. Digitize: To produce a polygon vector layer for use in ArcGIS (Environmental Systems Research Institute [ESRI], Redlands, California), we converted each raster-based image mosaic of orthorectified overlays containing the photointerpreted data into a grid format by using ArcGIS. In ArcGIS, we used the ArcScan extension to trace the raster data and produce ESRI shapefiles. We digitally assigned map-attribute codes (both map-class codes and physiognomic modifier codes) to the polygons and checked the digital data against the photointerpreted overlays for line and attribute consistency. Ultimately, we merged the individual layers into a seamless layer. Geodatabase: At this stage, the map layer has only map-attribute codes assigned to each polygon. To assign meaningful information to each polygon (e.g., map-class names, physiognomic definitions, links to NVCS types), we produced a feature-class table, along with other supportive tables and subsequently related them together via an ArcGIS Geodatabase. This geodatabase also links the map to other feature-class layers produced from this project, including vegetation sample plots, accuracy assessment (AA) sites, aerial photo locations, and project boundary extent. A geodatabase provides access to a variety of interlocking data sets, is expandable, and equips resource managers and researchers with a powerful GIS tool.
Facebook
TwitterWeb mapping project for the Gordan Natural Trail
Facebook
TwitterThis dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
Facebook
TwitterThis online map displays California’s active Underground Gas Storage (UGS) projects and wells associated to UGS projects. Project data and well data are provided by CalGEM’s Well Statewide Tracking and Reporting System (WellSTAR). Wells are displayed by well type and the association to a UGS project.CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).WellSTAR homepageUpdate Frequency: As Needed
Facebook
TwitterInfrastructure projects are compiled from the capital improvement plans for Transportation, Airport & Ferry, Surface Water Management, and Sewers. Programs (chipseal, paving, guardrail) are not displayed. Project location, scope, and schedule are subject to change. Please read metadata for additional information(https://matterhorn.piercecountywa.gov/GISmetadata/pdbpubw_improvement_project_points.html). Any data download constitutes acceptance of the Terms of Use (https://matterhorn.piercecountywa.gov/Disclaimer/PierceCountyGISDataTermsofUse.pdf).
Facebook
TwitterThis dataset was supplied to the Bioregional Assessment Programme by a third party and is presented here as originally supplied. The metadata was not provided by the data supplier and has been compiled by the programme based on known details.
The main objectives of the Clarence-Moreton *SEEBASETM and GIS Project study were to provide the NSW Department of Primary Industries with an integrated regional interpretation of the basement composition, lithology, structure and depth of the Clarence-Moreton Basin in New South Wales. This included the construction of a depth to basement image (SEEBASE™) for the area.
The effects of the basement geology on the evolution of the Clarence-Moreton Basin (both onshore and offshore) and of its precursors, the Esk Trough and the Ipswich Basin have been investigated. Attention was focused on the formation and reactivation of the basin controlling structures. The evolution of these structures has been evaluated in the light of the different tectonic events that have affected the area.
Maturity and fluid flow migration maps derived from SEEBASETM grids indicate that the central axis of the onshore depocentres and parts of the offshore basin are mature for present-day oil generation. However, these maps probably underestimate the maturity along the eastern margin of the basin, due to significant uplift and erosion that occurred during the Cenomanian. Such areas are likely to be mature for hydrocarbon generation provided adequate source rocks are present at depth.
Available gravity and magnetic data have been reprocessed and enhanced with an extensive set of wavelength and amplitude filters. An ArcMap 9.0 GIS product has been constructed that includes all structural interpretations, as well as the potential field data.
The revised and expanded interpretation of the structure and basin architecture in the area of the Clarence-Moreton Basin provides an improved understanding of basin evolution in the region, which will contribute to the reduction of exploration risks in the area.
[Taken from executive summary of report cited in History]
This dataset has been provided to the BA Programme for use within the programme only. Third parties should contact the NSW Department of Industry. http://www.industry.nsw.gov.au/
No specific metadata file or history statement provided. See MR707_report.pdf in 'seebase&strucuralGisProject_cla-mor_nsw-dpi\Report' directory.
NSW Department of Primary Industries (2014) Clarence-Moreton SEEBASE & Structural GIS Project data.. Bioregional Assessment Source Dataset. Viewed 28 September 2017, http://data.bioregionalassessments.gov.au/dataset/b1690f8b-4025-45d2-96a0-6feb03ff3e52.
Facebook
TwitterHigh impact GIS projects in 45 seconds or less (ArcGIS Blog)._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recognizing Montane Meadows and Quaking Aspen communities are a rare and valuable resource to plant and animal species in the Sierra Nevada, this project represents the beginning of a monitoring strategy for the conservation management of these ecosystems. The projects goals and objectives are to develop an accurate inventory of these systems, including high-resolution mapping and classification of community types, and surveys of selected terrestrial and aquatic animal species which depend on them. Other inventory related products include 360° photography, online survey reports and dynamic maps. In addition, refinements to electronic data collection tools and applications are provided to enhance future assessment programs.
Facebook
TwitterThe "Restoration Projects" feature layer is a component of the "Pollinator Restoration 2022" map which is itself a component of the "USFWS Pollinator Restoration Projects Mapper" which is a dashboard showing management projects that benefit pollinators across the Western U.S. See below for a description of the "USFWS Pollinator Restoration Projects Mapper."The "USFWS Pollinator Restoration Projects Mapper" is under development by the Region 1 (Pacific Northwest) USFWS Science Applications program. Completion is anticipated by Winter 2023. Contact: Alan Yanahan (alan_yanahan@fws.gov).The purpose of the "USFWS Pollinator Restoration Projects Mapper" is to inform future pollinator conservation efforts by providing a way to identify geographic areas where additional pollinator conservation may be needed.The "USFWS Pollinator Restoration Projects Mapper" maps the locations of where on-the-ground projects that are beneficial to pollinators have taken place. Its primary focus is projects on public lands. The majority of records included in this tool come from internal databases for the USFWS, US Forest Service, and the Bureau of Land Management, which were queried for relevant projects. The tool is not intended as a database for reporting projects to. Rather, the tool synthesizes records from existing databases.The geographic scope of the tool includes the western states of Arizona, California, Idaho, Nevada, Oregon, Utah, and Washington.When possible, the tool includes projects from 2014 to the present. This timespan was chosen because it matches the timespan of the USFWS Monarch Conservation Database For consistency, the tool groups pollinator beneficial projects into the following four activity types:Restoration: Actions taken after a disturbance, such as planting native forbs after a wildfireMaintenance: Actions taken outside the growing season that maintain habitat quality through regular disturbance using manual or chemical means. Examples: mowing, spraying weeds, prescribed fireConservation: Acquiring land or creating easements that are managed for biodiversityEnhancement: Actions that increase forb diversity and nectar resources, such as planting native milkweedThe tool includes a map that aggregates project point locations within 49 square mile sized hexagon grid cells. Users can click on individual grid cells to activate a pop-up menu to cycle through the projects that occurred within that grid cell. Information for each project include, but are not limited to, acreage, type of activity (i.e., restoration, maintenance, conservation, enhancement), data source, and lead organization.The tool also includes a dashboard to view bar graphs and pie charts that display project acreages and project number based on location (i.e., state), project activity type (i.e., restoration, maintenance, conservation, enhancement), data source, and management type. Data can be filtered by data source, activity type, and year. Data filtering will update the map, bar graphs, and pie charts.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Environmental Geologic-GIS Map for San Antonio Missions National Historical Park and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (saan_environmental_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (saan_environmental_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (saan_environmental_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (saan_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (saan_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (saan_environmental_geology_metadata_faq.pdf). Please read the saan_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (saan_environmental_geology_metadata.txt or saan_environmental_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). Purpose:
Facebook
TwitterThe ZIP file consist of GIS files and an Access database with information about the excavations, findings and other metadata about the archaeological survey.
Facebook
TwitterThe ZIP file consist of GIS files and an Access database with information about the excavations, findings and other metadata about the archaeological survey.
Facebook
TwitterOpen the Data Resource: https://gis.chesapeakebay.net/cross-git/overview/ This story map summarizes the data assembled and the scoring criteria recommended by the subject matter experts involved in the Chesapeake Bay Program's Cross-GIT Mapping Project. It also presents the composite results of the analyses. Access the Cross-GIT HUC-12 Conservation Composite: https://gis.chesapeakebay.net/ags/rest/services/InterGIT/HUC12_Cons_Composite/MapServer Access the Cross-GIT HUC-12 Restoration Composite: https://gis.chesapeakebay.net/ags/rest/services/InterGIT/HUC12_Rest_Composite/MapServer
Facebook
TwitterThis public GIS dataset comes from the Alaska GAP project, and it is part of the final project report (Gotthard, Pyare, Huettmann et al. 2013). Here we present a copy of the original data set as a value-added product for basic use and training purposes. It consists of 53 environmental layers for all of Alaska in an ArcGIS 10 format and usually with a pixel size of 60m. These layers were compiled from various sources, and authorships should be fully honoured as stated in the details of this metadata. Output maps were clipped using a state of Alaska coastline in the Alaska Albers NAD83 projection; very small islands are excluded.The data layers were initially compiled for ecological niche models of Alaska's terrestrial biodiversity using Maxent and other Machine Learning algorithms. However, they can also be used for many other purposes, e.g. strategic conservation planning and individual information and assessments. The datasets are a snapshot in space and time (2012) but likely remain valid for years to come. It is appreciated that these data layers are 'living products', and it is hoped that this public data publication here will progress and trigger many updates and data quality improvements for Alaska and its public high-quality data over time. The following variables are included in this dataset: Boundaries Coastline, Climate Precipitation January til December Average monthly precipitation (mm), Climate Precipitation Average annual precipitation (mm), Climate Temperature January til December Average monthly temperature (deg C), Climate Temperature annual temperature (dec C), Climate First day of thaw (Julian date), Climate First day of freeze (Julian date), Climate Length of growing season Number of days, Disturbance Insect history (Year), Distance to Disturbance Insect location (m), Disturbance Fire history Year of fire (1942 til 2007), distance to Disturbance Fire location (m), Soils Grid (category), Surfacial Geology Grid values, Glacial Distance (m), Distance(m) to lotic water, Distance (m) to permafrost boundary, Distance(m) to lentic water, Saltwater Presence, Distance (m) to Sea Ice Extent 2003-2007 December, Distance (m) to Sea Ice Extent 2003-2007 July, Distance to Development Infrastructure, Landcover Vegetation (Landfire), Landcover nlcd60, Elevation (m), Slope (%), Aspect (Degrees from due south), Terrain Ruggedness index, Extent nullgrid 9999, Coast raster.
Facebook
TwitterThe ZIP file consist of GIS files and an Access database with information about the excavations, findings and other metadata about the archaeological survey.
Facebook
TwitterThe Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).