60 datasets found
  1. u

    Data from: Interactive 3d models and animations for understanding earth’s...

    • research.usc.edu.au
    • researchdata.edu.au
    zip
    Updated Sep 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjeev K Srivastava (2021). Interactive 3d models and animations for understanding earth’s coordinate systems [Dataset]. https://research.usc.edu.au/esploro/outputs/dataset/Interactive-3d-models-and-animations-for/99451196102621
    Explore at:
    zip(12075401 bytes), zip(51905679 bytes), zip(73933046 bytes), zip(7302447 bytes)Available download formats
    Dataset updated
    Sep 14, 2021
    Dataset provided by
    University of the Sunshine Coast
    Authors
    Sanjeev K Srivastava
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2018
    Area covered
    Earth
    Description

    This work presents datasets that can be used for getting a good understanding of an essential geoscience content knowledge that describe earth's coordinate systems. This include coordinate system used for spherical/spheroidal earth with latitudes and longitudes and their subsequent transformations to 2d maps on a variety of media (paper as well as digital) using the process of map projections. The datasets include PDF documents that are embedded with 3d models, animations and mathematical equations. The dataset has separate PDF documents for geographic (for spherical earth) and projected (2d) coordinate systems. Additionally, the data set include individual 3d models that can be used in various digital systems (including apps) and the animations in mp4 format that can be watched on most of the modern digital devices.

  2. U

    Lunar Grid Reference System Rasters and Shapefiles

    • data.usgs.gov
    • catalog.data.gov
    Updated Oct 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Mcclernan (2024). Lunar Grid Reference System Rasters and Shapefiles [Dataset]. http://doi.org/10.5066/P13YPWQD
    Explore at:
    Dataset updated
    Oct 14, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Mark Mcclernan
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Sep 17, 2024
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC), but this is not released here. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a transverse Me ...

  3. a

    2022 Lake County Aerial - NE Corner

    • data-lakecountyil.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2023). 2022 Lake County Aerial - NE Corner [Dataset]. https://data-lakecountyil.opendata.arcgis.com/documents/05abbf83da924abdb9cf063365349cf7
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset authored and provided by
    Lake County Illinois GIS
    Description

    This three inch pixel resolution color aerial photography was flown between March 19 and March 26, 2022. The files are provided in TIF format which is supported by most GIS and CAD software packages. Its intended usage for viewing is 1" = 100'. The photography has been orthorectified to meet National Map Accuracy Standards for its capture scale. The images are georeferenced to the Illinois State Plane, Eastern Zone. The data set is tiled for dissemination into separate tiles, each of which is 5280 feet (1 mile) on a side.This imagery is provided on an as-is basis, with no guarantees of accuracy or suitability for any particular purpose. Lake County, Illinois, assumes no responsibility for conclusions or decisions reached on the basis of this data.This dataset is projected using the Transverse Mercator map projection. The grid coordinate system used is the Illinois State Plane Coordinate System, East Zone (Zone Number Zone 3776, FIPS 1201), with ground coordinates expressed in U.S. Survey Feet.

  4. Data from: The Effects of Spatial Reference Systems on the Predictive...

    • data.wu.ac.at
    • data.gov.au
    pdf
    Updated Jun 24, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geoscience Australia (2017). The Effects of Spatial Reference Systems on the Predictive Accuracy of Spatial Interpolation Methods [Dataset]. https://data.wu.ac.at/schema/data_gov_au/MDk3MDczYmUtOGJiNy00ZTZjLTg5ZDEtOTJjOTFjZTY4ZDc3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 24, 2017
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    cdb4de486436d3d9ac634ede7971967692d8235f
    Description

    Geoscience Australia has been deriving raster sediment datasets for the continental Australian Exclusive Economic Zone (AEEZ) using existing marine samples collected by Geoscience Australia and external organisations. Since seabed sediment data are collected at sparsely and unevenly distributed locations, spatial interpolation methods become essential tools for generating spatially continuous information. Previous studies have examined a number of factors that affect the performance of spatial interpolation methods. These factors include sample density, data variation, sampling design, spatial distribution of samples, data quality, correlation of primary and secondary variables, and interaction among some of these factors. Apart from these factors, a spatial reference system used to define sample locations is potentially another factor and is worth investigating. In this study, we aim to examine the degree to which spatial reference systems can affect the predictive accuracy of spatial interpolation methods in predicting marine environmental variables in the continental AEEZ. Firstly, we reviewed spatial reference systems including geographic coordinate systems and projected coordinate systems/map projections, with particular attention paid to map projection classification, distortion and selection schemes; secondly, we selected eight systems that are suitable for the spatial prediction of marine environmental data in the continental AEEZ. These systems include two geographic coordinate systems (WGS84 and GDA94) and six map projections (Lambert Equal-area Azimuthal, Equidistant Azimuthal, Stereographic Conformal Azimuthal, Albers Equal-Area Conic, Equidistant Conic and Lambert Conformal Conic); thirdly, we applied two most commonly used spatial interpolation methods, i.e. inverse distance squared (IDS) and ordinary kriging (OK) to a marine dataset projected using the eight systems. The accuracy of the methods was assessed using leave-one-out cross validation in terms of their predictive errors and, visualization of prediction maps. The difference in the predictive errors between WGS84 and the map projections were compared using paired Mann-Whitney test for both IDW and OK. The data manipulation and modelling work were implemented in ArcGIS and R. The result from this study confirms that the little shift caused by the tectonic movement between WGS84 and GDA94 does not affect the accuracy of the spatial interpolation methods examined (IDS and OK). With respect to whether the unit difference in geographical coordinates or distortions introduced by map projections has more effect on the performance of the spatial interpolation methods, the result shows that the accuracies of the spatial interpolation methods in predicting seabed sediment data in the SW region of AEEZ are similar and the differences are considered negligible, both in terms of predictive errors and prediction map visualisations. Among the six map projections, the slightly better prediction performance from Lambert Equal-Area Azimuthal and Equidistant Azimuthal projections for both IDS and OK indicates that Equal-Area and Equidistant projections with Azimuthal surfaces are more suitable than other projections for spatial predictions of seabed sediment data in the SW region of AEEZ. The outcomes of this study have significant implications for spatial predictions in environmental science. Future spatial prediction work using a data density greater than that in this study may use data based on WGS84 directly and may not have to project the data using certain spatial reference systems. The findings are applicable to spatial predictions of both marine and terrestrial environmental variables.

    You can also purchase hard copies of Geoscience Australia data and other products at http://www.ga.gov.au/products-services/how-to-order-products/sales-centre.html

  5. d

    Lunar Grid Reference System (LGRS) Terrestrial Navigational Training Grids...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lunar Grid Reference System (LGRS) Terrestrial Navigational Training Grids in Artemis Condensed Coordinate (ACC) Format [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-lgrs-terrestrial-navigational-training-grids-in-artemis-conden
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids to meet NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC). This data release includes LGRS grids finer than 25km (1km, 100m, and 10m) in ACC format for a small number of terrestrial analog sites of interest. The grids contained in this data release are projected in the terrestrial Universal Transverse Mercator (UTM) Projected Coordinate Reference System (PCRS) using the World Geodetic System of 1984 (WGS84) as its reference datum. A small number of geotiffs used to related the linear distortion the UTM and WGS84 systems imposes on the analog sites include: 1) a clipped USGS Nation Elevation Dataset (NED) Digital Elevation Model (DEM); 2) the grid scale factor of the UTM zone the data is projected in, 3) the height factor based on the USGS NED DEM, 4) the combined factor, and 5) linear distortion calculated in parts-per-million (PPM). Geotiffs are projected from WGS84 in a UTM PCRS zone. Distortion calculations are based on the methods State Plane Coordinate System of 2022. See Dennis (2021; https://www.fig.net/resources/proceedings/fig_proceedings/fig2023/papers/cinema03/CINEMA03_dennis_12044.pdf) for more information. Coarser grids, (>=25km) such as the lunar LTM, LPS, and LGRS grids are not released here but may be acceded from https://doi.org/10.5066/P13YPWQD and displayed using a lunar datum. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. Terrestrial Locations and associated LGRS ACC Grids and Files: Projection Location Files UTM 11N Yucca Flat 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 12N Buffalo Park 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff Cinder Lake 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff JETT3 Arizona 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff JETT5 Arizona 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff Meteor Crater 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 13N HAATS 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile 1km Grid Shapefile Derby LZ Clip 100m Grid Shapefile Derby LZ Clip 10m Grid Shapefile Derby LZ Clip 1km Grid Shapefile Eagle County Regional Airport KEGE Clip 100m Grid Shapefile Eagle County Regional Airport KEGE Clip 10m Grid Shapefile Eagle County Regional Airport KEGE Clip 1km Grid Shapefile Windy Point LZ Clip 100m Grid Shapefile Windy Point LZ Clip 10m Grid Shapefile Windy Point LZ Clip USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 15N Johnson Space Center 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff UTM 28N JETT2 Icelandic Highlands 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile USGS 1/3" DEM Geotiff UTM Projection Scale Factor Geotiff Map Height Factor Geotiff Map Combined Factor Geotiff Map Linear Distortion Geotiff The shapefiles and rasters utilize UTM projections. For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude should utilize a registered PCRS. To select the correct UTM EPSG code, determine the zone based on longitude (zones are 6° wide, numbered 1–60 from 180°W) and hemisphere (Northern Hemisphere uses EPSG:326XX; Southern Hemisphere uses EPSG:327XX), where XX is the zone number. For display in display in latitude and longitude, select a correct WGS84 EPSG code, such as EPSG:4326. Note: The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a Transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These Transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like its equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized similarly to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require an LPS projection and equatorial areas a Transverse Mercator. We describe the differences in the techniques and methods reported in this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These grids are designed to condense a full LGRS coordinate to a relative coordinate of 6 characters in length. LGRS in ACC format is completed by imposing a 1km grid within the LGRS 25km grid, then truncating the grid precision to 10m. To me the character limit, a coordinate is reported as a relative value to the lower-left corner of the 25km LGRS zone without the zone information; However, zone information can be reported. As implemented, and 25km^2 area on the lunar surface will have a set of a unique set of ACC coordinates to report locations The shape files provided in this data release are projected in the LTM or LPS PCRSs and must utilize these projections to be dimensioned correctly.

  6. d

    Lunar Grid Reference System (LGRS) Artemis III Candidate Landing Site...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Lunar Grid Reference System (LGRS) Artemis III Candidate Landing Site Navigational Grids in Artemis Condensed Coordinate (ACC) Format [Dataset]. https://catalog.data.gov/dataset/lunar-grid-reference-system-lgrs-artemis-iii-candidate-landing-site-navigational-grids-in-
    Explore at:
    Dataset updated
    Nov 9, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    USGS is assessing the feasibility of map projections and grid systems for lunar surface operations. We propose developing a new Lunar Transverse Mercator (LTM), the Lunar Polar Stereographic (LPS), and the Lunar Grid Reference Systems (LGRS). We have also designed additional grids designed to NASA requirements for astronaut navigation, referred to as LGRS in Artemis Condensed Coordinates (ACC). This data release includes LGRS grids finer than 25km (1km, 100m, and 10m) in ACC format. LTM, LPS, and LGRS grids are not released here but may be acceded from https://doi.org/10.5066/P13YPWQD. LTM, LPS, and LGRS are similar in design and use to the Universal Transverse Mercator (UTM), Universal Polar Stereographic (LPS), and Military Grid Reference System (MGRS), but adhere to NASA requirements. LGRS ACC format is similar in design and structure to historic Army Mapping Service Apollo orthotopophoto charts for navigation. The Lunar Transverse Mercator (LTM) projection system is a globalized set of lunar map projections that divides the Moon into zones to provide a uniform coordinate system for accurate spatial representation. It uses a Transverse Mercator projection, which maps the Moon into 45 transverse Mercator strips, each 8°, longitude, wide. These Transverse Mercator strips are subdivided at the lunar equator for a total of 90 zones. Forty-five in the northern hemisphere and forty-five in the south. LTM specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large areas with high positional accuracy while maintaining consistent scale. The Lunar Polar Stereographic (LPS) projection system contains projection specifications for the Moon’s polar regions. It uses a polar stereographic projection, which maps the polar regions onto an azimuthal plane. The LPS system contains 2 zones, each zone is located at the northern and southern poles and is referred to as the LPS northern or LPS southern zone. LPS, like its equatorial counterpart LTM, specifies a topocentric, rectangular, coordinate system (easting and northing coordinates) for spatial referencing. This projection is commonly used in GIS and surveying for its ability to represent large polar areas with high positional accuracy while maintaining consistent scale across the map region. LGRS is a globalized grid system for lunar navigation supported by the LTM and LPS projections. LGRS provides an alphanumeric grid coordinate structure for both the LTM and LPS systems. This labeling structure is utilized similarly to MGRS. LGRS defines a global area grid based on latitude and longitude and a 25×25 km grid based on LTM and LPS coordinate values. Two implementations of LGRS are used as polar areas require an LPS projection and equatorial areas a Transverse Mercator. We describe the differences in the techniques and methods reported in this data release. Request McClernan et. al. (in-press) for more information. ACC is a method of simplifying LGRS coordinates and is similar in use to the Army Mapping Service Apollo orthotopophoto charts for navigation. These grids are designed to condense a full LGRS coordinate to a relative coordinate of 6 characters in length. LGRS in ACC format is completed by imposing a 1km grid within the LGRS 25km grid, then truncating the grid precision to 10m. To me the character limit, a coordinate is reported as a relative value to the lower-left corner of the 25km LGRS zone without the zone information; However, zone information can be reported. As implemented, and 25km^2 area on the lunar surface will have a set of a unique set of ACC coordinates to report locations The shape files provided in this data release are projected in the LTM or LPS PCRSs and must utilize these projections to be dimensioned correctly. LGRS ACC Grids Files and Resolution: LGRS ACC Grids in LPS portion: Amundsen_Rim 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Nobile_Rim_2 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Haworth 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Faustini_Rim_A 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile de_Gerlache_Rim_2 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Connecting_Ridge_Extension 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Connecting_Ridge 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Nobile_Rim_1 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Peak_Near_Shackleton 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile de_Gerlache_Rim' 'Leibnitz_Beta_Plateau 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Malapert_Massif 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile de_Gerlache-Kocher_Massif 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile LGRS ACC Grids in LTM portion: Apollo_11 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Apollo_12 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Apollo_14 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Apollo_15 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Apollo_16 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile Apollo_17 1km Grid Shapefile 100m Grid Shapefile 10m Grid Shapefile LTM, LPS, and LGRS PCRS shapefiles utilize either a custom transverse Mercator or polar Stereographic projection. For PCRS grids the LTM and LPS projections are recommended for all LTM, LPS, and LGRS grid sizes. See McClernan et. al. (in-press) for such projections. For GIS utilization of grid shapefiles projected in Lunar Latitude and Longitude should utilize a registered lunar geographic coordinate system (GCS) such as IAU_2015:30100 or ESRI:104903. This only applies to grids that cross multiple LTM zones. Note: All data, shapefiles require a specific projection and datum. The projection is recommended as LTM and LPS or, when needed, IAU_2015:30100 or ESRI:104903. The datum utilized must be the Jet Propulsion Laboratory (JPL) Development Ephemeris (DE) 421 in the Mean Earth (ME) Principal Axis Orientation as recommended by the International Astronomy Union (IAU) (Archinal et. al., 2008).

  7. a

    Data from: US Roads

    • hub.arcgis.com
    • gis-mdc.opendata.arcgis.com
    Updated Jun 6, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miami-Dade County, Florida (2018). US Roads [Dataset]. https://hub.arcgis.com/maps/MDC::us-roads
    Explore at:
    Dataset updated
    Jun 6, 2018
    Dataset authored and provided by
    Miami-Dade County, Florida
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    A line feature class of the FDOT U.S. Highways, it provides spatial information on Florida U.S. Highways as well attribute information compatible with the Roadway Characteristics Inventory (RCI) database. The US Roads feature class covers the state of Florida at a scale of 1:24,000 and was created in a projection system of Universal Transverse Mercator (UTM) 17 North zone and a horizontal datum of North American 1983 (NAD 1983), map units in meters. It was then projected by MDC into NAD_1983_StatePlane_Florida_East_FIPS_0901_Feet, map units feet.Updated: Bi-Annually The data was created using: Projected Coordinate System: WGS_1984_Web_Mercator_Auxiliary_SphereProjection: Mercator_Auxiliary_Sphere

  8. c

    Data from: LBA-ECO LC-24 Cadastral Property Map of Uruara, Para, Brazil:...

    • s.cnmilf.com
    • search.dataone.org
    • +6more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ORNL_DAAC (2025). LBA-ECO LC-24 Cadastral Property Map of Uruara, Para, Brazil: ca.1975 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/lba-eco-lc-24-cadastral-property-map-of-uruara-para-brazil-ca-1975-45026
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    ORNL_DAAC
    Area covered
    Brazil, State of Pará
    Description

    This data set contains a shapefile of a digitized map of the land parcel information of the original properties of the Uruara colonization site, Para, Brazil, acquired from the Instituto de Colonizacao e Reforma Agraria, or the Colonization and Agrarian Reform Institute (INCRA). The Uruara settlement geometry was initially designed by INCRA, and consists of mostly 100 hectare lots (400 x 2500 meters, and 500 x 2000 meters), running north and south of the Trans-Amazon Highway, as a fine network of small, narrow rectangles. The other parcels in the landscape are the so-called glebas that range up to 3,000 hectares. The map was in the form of a paper map without a projection (a spherical geographic coordinate system) in the South American 1969 datum (SAD 1969). This paper map was digitized in Environmental Science Research Institute (ESRI) ArcInfo 8.1 using a digitizing table, and the digital cadastral data were geo-referenced and projected to match the Universal Transverse Mercator projection (Zone 22 South, World Geodetic System 1984 datum) of Landsat imagery (Landsat.org). There is one compressed (*.zip) file with this data set.

  9. d

    ARCHIVED: Parking Citations

    • catalog.data.gov
    • data.lacity.org
    Updated Jan 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2024). ARCHIVED: Parking Citations [Dataset]. https://catalog.data.gov/dataset/parking-citations-0e4fd
    Explore at:
    Dataset updated
    Jan 5, 2024
    Dataset provided by
    data.lacity.org
    Description

    New Parking Citations dataset here: https://data.lacity.org/Transportation/Parking-Citations/4f5p-udkv/about_data ---Archived as of September 2023--- Parking citations with latitude / longitude (XY) in US Feet coordinates according to the California State Plane Coordinate System - Zone 5 (https://www.conservation.ca.gov/cgs/rgm/state-plane-coordinate-system). For more information on Geographic vs Projected coordinate systems, read here: https://www.esri.com/arcgis-blog/products/arcgis-pro/mapping/gcs_vs_pcs/ For information on how to change map projections, read here: https://learn.arcgis.com/en/projects/make-a-web-map-without-web-mercator/

  10. UTM (Universal Transverse Mercator) 5 Km Grid

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, html, zip
    Updated Jul 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). UTM (Universal Transverse Mercator) 5 Km Grid [Dataset]. https://open.canada.ca/data/en/dataset/76b524a3-8535-46d2-8cd8-36b2b0d81873
    Explore at:
    html, esri rest, zipAvailable download formats
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Many geometrical schemes - or map projections - are used to represent the curved surface of the Earth on map sheets. Canada uses the Universal Transverse Mercator (UTM) system. It is called transverse because the strips run north-south rather than east-west along the equator. This data class shows a 5 km x 5 km grid coordinate system based on the UTM projection using the North American Datum 83 (NAD83). It includes a UTM Map Sheet Number.

  11. c

    2018 Imagery (3in Water Service Area)

    • geohub.cityoftacoma.org
    • data-carltoncounty.opendata.arcgis.com
    Updated Jul 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (2018). 2018 Imagery (3in Water Service Area) [Dataset]. https://geohub.cityoftacoma.org/maps/tacoma::2018-imagery-3in-water-service-area-1/about
    Explore at:
    Dataset updated
    Jul 15, 2018
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Water Service Area 2018 - 3 inch Aerials for ArcGIS Online/Bing Maps/Google Maps, etc.Allow clients to export 100,000 cached tiles for offline use.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgCompany: Quantum Spatial, Inc.Flight Time Date Range:Beginning Date: 06/17/2018Ending Date: 07/15/2018Detailed Metadata (Internal use only)Original ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.597308 East longitude: -121.732097 North latitude: 47.347891 South latitude: 47.061812Extent in the item's coordinate system: West longitude: 1120428.000000 East longitude: 1333428.000000 South latitude: 637207.000000 North latitude: 737082.000000

  12. G

    UTM (Universal Transverse Mercator) 10 Km Grid

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). UTM (Universal Transverse Mercator) 10 Km Grid [Dataset]. https://open.canada.ca/data/dataset/1c6c420c-d8e2-4e1b-8a3a-b8b5868661d0
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Government of Ontario
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Many geometrical schemes - or map projections - are used to represent the curved surface of the Earth on map sheets. Canada uses the Universal Transverse Mercator (UTM) system. It is called transverse because the strips run north-south rather than east-west along the equator. This data class shows a 10 km x 10 km coordinate system based on the UTM projection using the North American Datum 83 (NAD83) grid. It includes: * Military Grid Reference- identifies a specific military grid reference system grid cell * Fire Base Map identifier- five digit identifier used by MNR's Aviation and Forest Fire Management Program to identify a fire basemap * Atlas identifier - identifies a specific grid cell * UTM Map Sheet Number - ID number of a UTM mapsheet This product requires the use of GIS software. UTM Grid - Map Projections *[NAD83]: North American Datum 83 *[UTM]: Universal Transverse Mercator

  13. K

    Denver, Colorado Edge of Pavement Area (2014)

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated May 15, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City and County of Denver, Colorado (2019). Denver, Colorado Edge of Pavement Area (2014) [Dataset]. https://koordinates.com/layer/101907-denver-colorado-edge-of-pavement-area-2014/
    Explore at:
    mapinfo mif, geodatabase, shapefile, mapinfo tab, pdf, dwg, geopackage / sqlite, kml, csvAvailable download formats
    Dataset updated
    May 15, 2019
    Dataset authored and provided by
    City and County of Denver, Colorado
    Area covered
    Description

    This metadata describes the stereocompiled Edge of Pavement (EOP) polygons feature of DRCOG Denver Region Urbanized Project Area. The feature was compiled from the Denver Regional Aerial Photography Project (DRAPP) 2014 Aerial Imagery Acquisition and Production. This 1"=100' scale imagery is comprised of 4-band RGBIR color orthoimagery with a GSD (Ground Sample Distance) of 0.5'. Imagery was collected with the Leica ADS40 and ADS80 digital sensors and processed with Leica XPro software. Imagery is projected in State Plane Coordinate System, Colorado central zone using the Lambert Conformal Conic map projection parameters. Horizontal and vertical datums are NAD83(11) and NAVD88(GEOID12A) respectively.

  14. USGS High Resolution Orthoimagery for DuPage County, Illinois:...

    • datadiscoverystudio.org
    jpeg2000
    Updated Jan 1, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2014). USGS High Resolution Orthoimagery for DuPage County, Illinois: 16TDM065200_201203_0x1500m_4B_2 [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/cb389a3e6316438896c55601d4a4ea49/html
    Explore at:
    jpeg2000(231.076366)Available download formats
    Dataset updated
    Jan 1, 2014
    Dataset provided by
    Cook County Board of Commissionershttp://cookcountyil.gov/
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Description

    'This file is a digital geospatial Environmental Systems Research Institute (Esri) ArcGIS polygon feature class of the tile index for Cook, DuPage, Grundy, Kane, Kendall, Lake, McHenry, and Will County, Illinois. Each tile is 2,500' on a side, and covers an area of 6,250,000 square feet or 143 acres. There are a total of 18,905 tiles, and each tile represents the boundary or extent of each ortho image. This dataset includes a coordinate based tile identification number, a delivery area number, and a project tile category. The delivery area numbers and project tile attributes are a proprietary classification that are unique to this project. This dataset is stored within an ArcGIS 10.1 geodatabase. This dataset is projected using the Transverse Mercator map projection. The grid coordinate system used is the Illinois State Plane Coordinate System, East Zone (Zone Number Zone 3776, FIPS 1201), NAD 83 NSRS2007 (horizontal datum), with ground coordinates expressed in U.S. Survey Feet.'An orthoimage is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthoimagery combines the image characteristics of a photograph with the geometric qualities of a map. There is no image overlap between adjacent files. Data received at Earth Resources Observation and Science Center (EROS) were reprojected from: Projection: NAD_1983_HARN_StatePlane_Illinois_East_FIPS_1201 Resolution: 6 inch Type: 4 Band to: Standard Product Projection: NAD_1983_UTM_Zone_16N Standard Product Resolution: 0.1500 m Rows: 10000 Columns: 10000 and resampled to align to the U.S. National Grid (USNG) using The National Map. The naming convention is based on the U.S. National Grid (USNG), taking the coordinates of the SW corner of the orthoimage. The metadata were imported and updated for display through The National Map at http://nationalmap.gov/viewer.html Chip-level metadata are provided in HTML and XML format. Data were compressed utilizing IAS software. The compression was JPEG2000 Lossy Compressed. The file format created was .jp2.

  15. c

    Parcels Public

    • gisdata.countyofnapa.org
    • hub.arcgis.com
    Updated Aug 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Napa County GIS | ArcGIS Online (2023). Parcels Public [Dataset]. https://gisdata.countyofnapa.org/maps/napacounty::parcels-public-1
    Explore at:
    Dataset updated
    Aug 15, 2023
    Dataset authored and provided by
    Napa County GIS | ArcGIS Online
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Description

    Internal view of the parcel layer. This view contains all the attributes that can be seen by County employees.There are approximately 51,300 real property parcels in Napa County. Parcels delineate the approximate boundaries of property ownership as described in Napa County deeds, filed maps, and other source documents. GIS parcel boundaries are maintained by the Information Technology Services GIS team. Assessor Parcel Maps are created and maintained by the Assessor Division Mapping Section. Each parcel has an Assessor Parcel Number (APN) that is its unique identifier. The APN is the link to various Napa County databases containing information such as owner name, situs address, property value, land use, zoning, flood data, and other related information. Data for this map service is sourced from the Napa County Parcels dataset which is updated nightly with any recent changes made by the mapping team. There may at times be a delay between when a document is recorded and when the new parcel boundary configuration and corresponding information is available in the online GIS parcel viewer.From 1850 to early 1900s assessor staff wrote the name of the property owner and the property value on map pages. They began using larger maps, called “tank maps” because of the large steel cabinet they were kept in, organized by school district (before unification) on which names and values were written. In the 1920s, the assessor kept large books of maps by road district on which names were written. In the 1950s, most county assessors contracted with the State Board of Equalization for board staff to draw standardized 11x17 inch maps following the provisions of Assessor Handbook 215. Maps were originally drawn on linen. By the 1980’s Assessor maps were being drawn on mylar rather than linen. In the early 1990s Napa County transitioned from drawing on mylar to creating maps in AutoCAD. When GIS arrived in Napa County in the mid-1990s, the AutoCAD images were copied over into the GIS parcel layer. Sidwell, an independent consultant, was then contracted by the Assessor’s Office to convert these APN files into the current seamless ArcGIS parcel fabric for the entire County. Beginning with the 2024-2025 assessment roll, the maps are being drawn directly in the parcel fabric layer.Parcels in the GIS parcel fabric are drawn according to the legal description using coordinate geometry (COGO) drawing tools and various reference data such as Public Lands Survey section boundaries and road centerlines. The legal descriptions are not defined by the GIS parcel fabric. Any changes made in the GIS parcel fabric via official records, filed maps, and other source documents are uploaded overnight. There is always at least a 6-month delay between when a document is recorded and when the new parcel configuration and corresponding information is available in the online parcel viewer for search or download.Parcel boundary accuracy can vary significantly, with errors ranging from a few feet to several hundred feet. These distortions are caused by several factors such as: the map projection - the error derived when a spherical coordinate system model is projected into a planar coordinate system using the local projected coordinate system; and the ground to grid conversion - the distortion between ground survey measurements and the virtual grid measurements. The aim of the parcel fabric is to construct a visual interpretation that is adequate for basic geographic understanding. This digital data is intended for illustration and demonstration purposes only and is not considered a legal resource, nor legally authoritative.SFAP & CFAP DISCLAIMER: Per the California Code, RTC 606. some legal parcels may have been combined for assessment purposes (CFAP) or separated for assessment purposes (SFAP) into multiple parcels for a variety of tax assessment reasons. SFAP and CFAP parcels are assigned their own APN number and primarily result from a parcel being split by a tax rate area boundary, due to a recorded land use lease, or by request of the property owner. Assessor parcel (APN) maps reflect when parcels have been separated or combined for assessment purposes, and are one legal entity. The goal of the GIS parcel fabric data is to distinguish the SFAP and CFAP parcel configurations from the legal configurations, to convey the legal parcel configurations. This workflow is in progress. Please be advised that while we endeavor to restore SFAP and CFAP parcels back to their legal configurations in the primary parcel fabric layer, SFAP and CFAP parcels may be distributed throughout the dataset. Parcels that have been restored to their legal configurations, do not reflect the SFAP or CFAP parcel configurations that correspond to the current property tax delineations. We intend for parcel reports and parcel data to capture when a parcel has been separated or combined for assessment purposes, however in some cases, information may not be available in GIS for the SFAP/CFAP status of a parcel configuration shown. For help or questions regarding a parcel’s SFAP/CFAP status, or property survey data, please visit Napa County’s Surveying Services or Property Mapping Information. For more information you can visit our website: When a Parcel is Not a Parcel | Napa County, CA

  16. a

    Aerial Imagery Reference Tiles

    • hub.arcgis.com
    • hub-cookcountyil.opendata.arcgis.com
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cook County Government (2023). Aerial Imagery Reference Tiles [Dataset]. https://hub.arcgis.com/maps/cookcountyil::aerial-imagery-reference-tiles/about
    Explore at:
    Dataset updated
    Dec 11, 2023
    Dataset authored and provided by
    Cook County Government
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This file is a digital geospatial Environmental Systems Research Institute (Esri) ArcGIS polygon feature class of the tile index for Cook County, Illinois. Each tile is 2,500' on a side, and covers an area of 6,250,000 square feet or 143 acres. There are a total of 5,347 tiles, and each tile represents the boundary or extent of each ortho image. This dataset includes a coordinate based tile identification number, a delivery area number, and a project tile category. The delivery area numbers and project tile attributes are a proprietary classification that are unique to this project. This dataset is stored within an ArcGIS 10.8 geodatabase. This dataset is projected using the Transverse Mercator map projection. The grid coordinate system used is the Illinois State Plane Coordinate System, East Zone (Zone Number Zone 3776, FIPS 1201), NAD83(2011) (horizontal datum), with ground coordinates expressed in U.S. Survey Feet.

  17. c

    1998 Imagery (1ft - Service Area)

    • geohub.cityoftacoma.org
    • data-carltoncounty.opendata.arcgis.com
    Updated Jul 1, 1998
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (1998). 1998 Imagery (1ft - Service Area) [Dataset]. https://geohub.cityoftacoma.org/maps/4afab8fecd2742729f58eee275896d8a
    Explore at:
    Dataset updated
    Jul 1, 1998
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Service Area 1998 - 1 foot Aerials for ArcGIS Online/Bing Maps/Google Maps, etc.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgCompany: Nies Mapping Group, Inc.Flight Date: July, 1998Original ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.840090 East longitude: -121.950170 North latitude: 47.419022 South latitude: 46.746980Extent in the item's coordinate system: West longitude: 1061000.000000 East longitude: 1277000.000000 South latitude: 524000.000000 North latitude: 764000.000000

  18. Geospatial data for the Vegetation Mapping Inventory Project of Russell Cave...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Russell Cave National Monument [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-russell-cave-national-monu
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Large scale final map products were created within ArcMap and designed to show both the orthophoto coverage and the vegetation maps. For the vegetation maps, colors were assigned and the polygons labeled with the dominant vegetation and modifier and, where present, the second vegetation and modifier. For the orthophoto maps, the photos were simply plotted at the same scale and area coverage as the vegetation maps. Additional planimetric map data included roads, trails, hydrology, boundaries and a UTM coordinate grid. Legends are designed to provide full definitions of the vegetation and buffer classes and modifiers, as well as information about the park, map projection, data sources and authorship (Figure 19). All maps are projected to the Universal Transverse Mercator Coordinate System, North American Datum of 1984, in the local zone for the specific park.

  19. c

    2002 Imagery (1ft - Puget Sound Area)

    • geohub.cityoftacoma.org
    • data-carltoncounty.opendata.arcgis.com
    Updated Jun 1, 2002
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tacoma GIS (2002). 2002 Imagery (1ft - Puget Sound Area) [Dataset]. https://geohub.cityoftacoma.org/datasets/2002-imagery-1ft-puget-sound-area-1
    Explore at:
    Dataset updated
    Jun 1, 2002
    Dataset authored and provided by
    City of Tacoma GIS
    License

    https://geohub.cityoftacoma.org/pages/disclaimerhttps://geohub.cityoftacoma.org/pages/disclaimer

    Area covered
    Description

    Puget Sound 2002 - 1 foot Aerials for ArcGIS Online/Bing Maps/Google Maps, etc. Includes areas north to Everett; east to Monroe, Sammamish, and Buckley; west to Vashon, Bremerton, and Gig Harbor; South to Roy.Contact Info: Name: GIS Team Email: GISteam@cityoftacoma.orgCompany: Triathlon, Inc.Flight Date: June, 2002Original ArcGIS coordinate system: Type: Projected Geographic coordinate reference: GCS_North_American_1983_HARN Projection: NAD_1983_HARN_StatePlane_Washington_South_FIPS_4602_Feet Well-known identifier: 2927Geographic extent - Bounding rectangle: West longitude: -122.695504 East longitude: -121.932319 North latitude: 48.027739 South latitude: 46.980475Extent in the item's coordinate system: West longitude: 1103000.000000 East longitude: 1283000.000000 South latitude: 608000.000000 North latitude: 986000.000000

  20. Geospatial data for the Vegetation Mapping Inventory Project of Mammoth Cave...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Mammoth Cave National Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-mammoth-cave-national-park
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Large scale final map products were created within ArcMap and designed to show both the orthophoto coverage and the vegetation maps. For the vegetation maps, colors were assigned and the polygons labeled with the dominant vegetation and modifier and, where present, the second vegetation and modifier. For the orthophoto maps, the photos were simply plotted at the same scale and area coverage as the vegetation maps. Additional planimetric map data included roads, trails, hydrology, boundaries and a UTM coordinate grid. Legends are designed to provide full definitions of the vegetation and buffer classes and modifiers, as well as information about the park, map projection, data sources and authorship. All maps are projected to the Universal Transverse Mercator Coordinate System, North American Datum of 1984, in the local zone for the specific park Map information- Veg Classes: 35 Polygons: 7,907 Avg Polygon size(ha) 2.58 Map Scale: 1:26,000

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sanjeev K Srivastava (2021). Interactive 3d models and animations for understanding earth’s coordinate systems [Dataset]. https://research.usc.edu.au/esploro/outputs/dataset/Interactive-3d-models-and-animations-for/99451196102621

Data from: Interactive 3d models and animations for understanding earth’s coordinate systems

Related Article
Explore at:
zip(12075401 bytes), zip(51905679 bytes), zip(73933046 bytes), zip(7302447 bytes)Available download formats
Dataset updated
Sep 14, 2021
Dataset provided by
University of the Sunshine Coast
Authors
Sanjeev K Srivastava
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2018
Area covered
Earth
Description

This work presents datasets that can be used for getting a good understanding of an essential geoscience content knowledge that describe earth's coordinate systems. This include coordinate system used for spherical/spheroidal earth with latitudes and longitudes and their subsequent transformations to 2d maps on a variety of media (paper as well as digital) using the process of map projections. The datasets include PDF documents that are embedded with 3d models, animations and mathematical equations. The dataset has separate PDF documents for geographic (for spherical earth) and projected (2d) coordinate systems. Additionally, the data set include individual 3d models that can be used in various digital systems (including apps) and the animations in mp4 format that can be watched on most of the modern digital devices.

Search
Clear search
Close search
Google apps
Main menu