100+ datasets found
  1. i

    Dataset for Stock Market Prediction

    • ieee-dataport.org
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umara Umar (2024). Dataset for Stock Market Prediction [Dataset]. https://ieee-dataport.org/documents/dataset-stock-market-prediction
    Explore at:
    Dataset updated
    Jul 8, 2024
    Authors
    Umara Umar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Hascol

  2. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. CM:TSX Stock Forecast: A Buy For The Next 6 Month (Forecast)

    • kappasignal.com
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). CM:TSX Stock Forecast: A Buy For The Next 6 Month (Forecast) [Dataset]. https://www.kappasignal.com/2023/09/cmtsx-stock-forecast-buy-for-next-6.html
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    CM:TSX Stock Forecast: A Buy For The Next 6 Month

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. c

    The global stock market size is USD 3645.2 million in 2024.

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). The global stock market size is USD 3645.2 million in 2024. [Dataset]. https://www.cognitivemarketresearch.com/stock-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jun 6, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research, the global stock market size will be USD 3645.2 million in 2024. It will expand at a compound annual growth rate (CAGR) of 13% from 2024 to 2031.

    North America held the major market share for more than 40% of the global revenue with a market size of USD 1458.1 million in 2024 and will grow at a compound annual growth rate (CAGR) of 11.2% from 2024 to 2031.
    Europe accounted for a market share of over 30% of the global revenue with a market size of USD 1093.6 million.
    Asia Pacific held a market share of around 23% of the global revenue with a market size of USD 838.4 million in 2024 and will grow at a compound annual growth rate (CAGR) of 15% from 2024 to 2031.
    Latin America had a market share of more than 5% of the global revenue with a market size of USD 182.3 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.4% from 2024 to 2031.
    Middle East and Africa had a market share of around 2% of the global revenue and was estimated at a market size of USD 72.9 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.7% from 2024 to 2031.
    The broker end users held the highest stock market revenue share in 2024.
    

    Market Dynamics of Stock Market

    Key Drivers for the Stock Market

    Rising Demand for Real-Time Data and Analytics to be an Emerging Market Trend
    

    The increasing need for real-time data and advanced analytics is a significant driver in the stock trading and investing market growth. Investors and traders require up-to-the-minute information on stock prices, market trends, and financial news to make informed decisions quickly. As financial markets become more dynamic and competitive, the ability to access and analyze real-time data becomes crucial for success. Trading applications that offer real-time updates, advanced charting tools, and detailed analytics provide users with a competitive edge by enabling them to react swiftly to market movements. This heightened demand for real-time insights fuels the development and adoption of sophisticated trading platforms that cater to both professional traders and retail investors seeking to maximize their investment opportunities.

    Increasing Adoption of Mobile Trading Platforms to Boost Market Growth
    

    The rapid adoption of mobile trading platforms is another key driver for the stock market expansion. With the proliferation of smartphones and mobile internet access, investors are increasingly favoring mobile platforms for their trading activities due to their convenience and accessibility. Mobile trading apps offer users the ability to trade, monitor portfolios, and access financial information on the go, which appeals to both active traders and casual investors. This shift towards mobile platforms is supported by innovations in-app functionality, user experience, and security features. As more investors seek flexibility and real-time engagement with their investments, the demand for sophisticated and user-friendly mobile trading applications continues to rise, propelling market growth.

    Restraint Factor for the Stock Market

    Stringent Rules and Regulations to Impede the Adoption of Online Trading Platforms
    

    Regulatory compliance and legal challenges are major restraints for the stock trading and investing market share. The financial industry is heavily regulated, with strict rules governing trading practices, data protection, and financial disclosures. Compliance with these regulations requires substantial investment in legal expertise, technology, and administrative processes. Changes in regulations can also introduce uncertainty and additional compliance costs for application providers. For example, regulations such as the Markets in Financial Instruments Directive II (MiFID II) in Europe and the Dodd-Frank Act in the U.S. impose stringent requirements on trading practices and transparency. Failure to adhere to these regulations can result in legal penalties and damage to a company’s reputation, which can inhibit market growth and innovation in trading applications.

    Market Volatility and Investor Uncertainty
    
    The stock market is highly sensitive to global economic conditions, geopolitical tensions, interest rate fluctuations, and unexpected events (such as pandemics or wars). This inherent volatility can lead to sharp declines in investor confidence and capital outflows, especially among retai...
    
  5. if the stock market goes down during a recession, you should sell all of...

    • kappasignal.com
    Updated May 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). if the stock market goes down during a recession, you should sell all of your investments to minimize your losses. (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/if-stock-market-goes-down-during.html
    Explore at:
    Dataset updated
    May 6, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    if the stock market goes down during a recession, you should sell all of your investments to minimize your losses.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Aug 1, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, fell to 40800 points on August 1, 2025, losing 0.66% from the previous session. Over the past month, the index has climbed 2.61% and is up 13.62% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on August of 2025.

  7. T

    Sweden Stock Market Index Data

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Sweden Stock Market Index Data [Dataset]. https://tradingeconomics.com/sweden/stock-market
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Apr 25, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 1986 - Aug 1, 2025
    Area covered
    Sweden
    Description

    Sweden's main stock market index, the Stockholm, fell to 2534 points on August 1, 2025, losing 1.80% from the previous session. Over the past month, the index has climbed 0.45% and is up 2.70% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Sweden. Sweden Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.

  8. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +4more
    csv, excel, json, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Aug 1, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6238 points on August 1, 2025, losing 1.60% from the previous session. Over the past month, the index has climbed 0.17% and is up 16.67% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.

  9. T

    Israel Stock Market (TA-125) Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Israel Stock Market (TA-125) Data [Dataset]. https://tradingeconomics.com/israel/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Feb 10, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 8, 1992 - Jul 31, 2025
    Area covered
    Israel
    Description

    Israel's main stock market index, the TA-125, fell to 3080 points on July 31, 2025, losing 0.21% from the previous session. Over the past month, the index has climbed 1.83% and is up 56.58% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Israel. Israel Stock Market (TA-125) - values, historical data, forecasts and news - updated on August of 2025.

  10. T

    Hong Kong Stock Market Index (HK50) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Hong Kong Stock Market Index (HK50) Data [Dataset]. https://tradingeconomics.com/hong-kong/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 31, 1964 - Aug 1, 2025
    Area covered
    Hong Kong
    Description

    Hong Kong's main stock market index, the HK50, fell to 24508 points on August 1, 2025, losing 1.07% from the previous session. Over the past month, the index has climbed 1.18% and is up 44.63% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on August of 2025.

  11. h

    moecule-stock-market-outlook

    • huggingface.co
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walter (2025). moecule-stock-market-outlook [Dataset]. https://huggingface.co/datasets/davzoku/moecule-stock-market-outlook
    Explore at:
    Dataset updated
    Mar 25, 2025
    Authors
    Walter
    Description

    🫐 Moecule Stock Market Outlook

      Dataset Details
    

    There are 1000 train samples and 200 test samples. This dataset is synthetically generated. This dataset is specially curated for the Moecule family of models and other related models.

      The Team
    

    CHOCK Wan Kee Farlin Deva Binusha DEVASUGIN MERLISUGITHA GOH Bao Sheng Jessica LEK Si Jia Sinha KHUSHI TENG Kok Wai (Walter)

  12. T

    Greece Stock Market (ASE) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Greece Stock Market (ASE) Data [Dataset]. https://tradingeconomics.com/greece/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Feb 2, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 5, 1988 - Aug 1, 2025
    Area covered
    Greece
    Description

    Greece's main stock market index, the Athens General, fell to 1960 points on August 1, 2025, losing 1.73% from the previous session. Over the past month, the index has climbed 3.49% and is up 36.98% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Greece. Greece Stock Market (ASE) - values, historical data, forecasts and news - updated on August of 2025.

  13. T

    United Kingdom Stock Market Index (GB100) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United Kingdom Stock Market Index (GB100) Data [Dataset]. https://tradingeconomics.com/united-kingdom/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1984 - Aug 1, 2025
    Area covered
    United Kingdom
    Description

    United Kingdom's main stock market index, the GB100, fell to 9069 points on August 1, 2025, losing 0.70% from the previous session. Over the past month, the index has climbed 3.35% and is up 10.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on August of 2025.

  14. S

    Stock Market Simulator Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Stock Market Simulator Report [Dataset]. https://www.archivemarketresearch.com/reports/stock-market-simulator-32349
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 17, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Analysis: Stock Market Simulator The global stock market simulator market is projected to witness robust growth, with its market size expected to reach $X million by 2033, registering a substantial CAGR of XX% during the forecast period (2025-2033). This upsurge can be attributed to the increasing popularity of online trading, advancements in technology, and the growing awareness of financial literacy among individuals. Key market drivers include the rising demand for virtual trading platforms, the need for risk-free investment simulations, and the surge in smartphone and internet penetration. Key trends shaping the market are the integration of artificial intelligence (AI) and machine learning, which enhances the accuracy of simulations and provides personalized trading experiences. The market also benefits from the growing adoption of mobile trading terminals, cloud-based solutions, and gamified trading experiences, which make it more accessible and engaging for a wider user base. However, factors such as data security concerns, regulatory complexities, and competition from traditional investment platforms may pose restraints. The market is segmented by type (PC terminal, mobile terminal) and application (personal, enterprise, others). Major players in the industry include Warrior Trading, MarketWatch, TD Ameritrade, and Investopedia. North America and Europe are expected to remain dominant regions in the market due to their advanced financial markets and high adoption of technology. A stock market simulator is a software program that mimics the trading of stocks in a real-world stock market. It allows users to buy and sell stocks, track their performance, and learn about the stock market without risking any real money. Stock market simulators are used by a variety of people, including individual investors, students, and financial professionals. There are many different types of stock market simulators available, ranging from simple, web-based simulators to more complex, professional-grade simulators. Some simulators are free to use, while others require a subscription fee. Stock market simulators can be a valuable tool for learning about the stock market and developing trading skills. However, it is important to remember that simulators are not a perfect substitute for real-world trading. There are a number of factors that can affect the performance of a stock in the real world that are not simulated in a simulator.

  15. Can we predict stock market using machine learning? (FZO Stock Forecast)...

    • kappasignal.com
    Updated Nov 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (FZO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_20.html
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (FZO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. T

    Warsaw Stock Exchange WIG Index Data

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Warsaw Stock Exchange WIG Index Data [Dataset]. https://tradingeconomics.com/poland/stock-market
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 16, 1991 - Aug 1, 2025
    Area covered
    Poland
    Description

    Poland's main stock market index, the WIG, fell to 105531 points on August 1, 2025, losing 2.18% from the previous session. Over the past month, the index has climbed 0.90% and is up 29.25% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Poland. Warsaw Stock Exchange WIG Index - values, historical data, forecasts and news - updated on August of 2025.

  17. T

    Italy Stock Market Index (IT40) Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Italy Stock Market Index (IT40) Data [Dataset]. https://tradingeconomics.com/italy/stock-market
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1997 - Aug 1, 2025
    Area covered
    Italy
    Description

    Italy's main stock market index, the IT40, fell to 40467 points on August 1, 2025, losing 1.27% from the previous session. Over the past month, the index has climbed 1.71% and is up 26.38% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Italy. Italy Stock Market Index (IT40) - values, historical data, forecasts and news - updated on August of 2025.

  18. T

    Spain Stock Market Index (ES35) Data

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Spain Stock Market Index (ES35) Data [Dataset]. https://tradingeconomics.com/spain/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 6, 1991 - Aug 1, 2025
    Area covered
    Spain
    Description

    Spain's main stock market index, the ES35, fell to 14127 points on August 1, 2025, losing 1.88% from the previous session. Over the past month, the index has climbed 0.58% and is up 32.36% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Spain. Spain Stock Market Index (ES35) - values, historical data, forecasts and news - updated on August of 2025.

  19. Can we predict stock market using machine learning? (Bovespa Index Stock...

    • kappasignal.com
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (Bovespa Index Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_8.html
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (Bovespa Index Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. Can we predict stock market using machine learning? (LPRO Stock Forecast)...

    • kappasignal.com
    Updated Nov 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (LPRO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_24.html
    Explore at:
    Dataset updated
    Nov 24, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (LPRO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Umara Umar (2024). Dataset for Stock Market Prediction [Dataset]. https://ieee-dataport.org/documents/dataset-stock-market-prediction

Dataset for Stock Market Prediction

Explore at:
9 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 8, 2024
Authors
Umara Umar
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Hascol

Search
Clear search
Close search
Google apps
Main menu