https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hascol
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The North America Machine Learning (ML) Market size was valued at USD 19.20 USD billion in 2023 and is projected to reach USD 172.15 USD billion by 2032, exhibiting a CAGR of 36.8 % during the forecast period. The increase in demand for efficient data analytics solutions, the growth of cloud computing, and the proliferation of IoT devices are driving the market's growth. Machine learning (ML) is a discipline of artificial intelligence that provides machines with the ability to automatically learn from data and past experiences while identifying patterns to make predictions with minimal human intervention. Machine learning methods enable computers to operate autonomously without explicit programming. ML applications are fed with new data, and they can independently learn, grow, develop, and adapt. Machine learning derives insightful information from large volumes of data by leveraging algorithms to identify patterns and learn in an iterative process. ML algorithms use computation methods to learn directly from data instead of relying on any predetermined equation that may serve as a model. Machine learning is used today for a wide range of commercial purposes, including suggesting products to consumers based on their past purchases, predicting stock market fluctuations, and translating text from one language to another. The North America Machine Learning (ML) Market is primarily driven by the increasing adoption of essential services like security information and cloud applications. Key drivers for this market are: Growing Adoption of Mobile Commerce to Augment the Demand for Virtual Fitting Room Tool . Potential restraints include: Lack of Privacy and Privacy Violations in AI and ML Applications to Restrain Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.
The global market size in the 'Machine Learning' segment of the artificial intelligence market was forecast to continuously increase between 2025 and 2031 by in total 462.9 billion U.S. dollars (+438.98 percent). After the eighth consecutive increasing year, the market size is estimated to reach 568.32 billion U.S. dollars and therefore a new peak in 2031. Find further information concerning the market size in the 'Machine Learning' segment of the artificial intelligence market in Spain and the market size change in the 'Computer Vision' segment of the artificial intelligence market in the United States. The Statista Market Insights cover a broad range of additional markets.
US Deep Learning Market Size 2024-2028
The US deep learning market size is forecast to increase by USD 3.55 billion at a CAGR of 27.17% between 2023 and 2028. The market is experiencing significant growth due to several key drivers. Firstly, the increasing demand for industry-specific solutions is fueling market expansion. Additionally, the high data requirements for deep learning applications are leading to increased data generation and collection. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability. However, challenges persist, including the escalating cyberattack rate and the need for strong customer data security. Education institutes are also investing in deep learning research and development to prepare the workforce for the future. Overall, the market is poised for continued growth, driven by these factors and the potential for innovation and advancement in various sectors.
Request Free Sample
Deep learning, a subset of artificial intelligence (AI), is a machine learning technique that uses neural networks to model and solve complex problems. This technology is gaining significant traction in various industries across the US, driven by the availability of large datasets and advancements in cloud-based technology. One of the primary areas where deep learning is making a mark is in data centers. Deep learning algorithms are being used to analyze vast amounts of data, enabling businesses to gain valuable insights and make informed decisions. Cloud-based technology is facilitating the deployment of deep learning models at scale, making it an attractive solution for businesses looking to leverage their data.
Furthermore, the market is rapidly evolving, driven by innovations in cloud-based technology, neural networks, and big-data analytics. The integration of machine vision technology and image and visual recognition has driven advancements in industries such as self driving vehicles, digital marketing, and virtual assistance. Companies are leveraging generative adversarial networks (GANs) for cutting-edge news accumulation and content generation. Additionally, machine vision is transforming sectors like retail and manufacturing by enhancing automation and human behavior analysis. With the use of human brain cells generated information, researchers are pushing the boundaries of artificial intelligence. The growing importance of photos and visual data in decision-making further accelerates the market, highlighting the potential of deep learning technologies.
Market Segmentation
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Application
Image recognition
Voice recognition
Video surveillance and diagnostics
Data mining
Type
Software
Services
Hardware
End-user
Security
Automotive
Healthcare
Retail and commerce
Others
Geography
US
By Application Insights
The Image recognition segment is estimated to witness significant growth during the forecast period. Deep learning, a subset of artificial intelligence (AI), is revolutionizing various industries in the US through its ability to analyze and interpret complex data. One of its key applications is image recognition, which utilizes neural networks and graphics processing units (GPUs) to identify objects or patterns within images and videos. This technology is increasingly being adopted in data centers and cloud-based solutions for applications such as visual search, product recommendations, and inventory management. In the automotive sector, image recognition is integral to advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.
Additionally, image recognition is essential for cybersecurity applications, industrial automation, Internet of Things (IoT) devices, and robots, enhancing their functionality and efficiency. Image recognition is transforming industries by providing accurate and real-time insights from visual data, ultimately improving user experience and productivity.
Get a glance at the market share of various segments Request Free Sample
The Image recognition segment was valued at USD 265.10 billion in 2017 and showed a gradual increase during the forecast period.
Our market researchers analyzed the data with 2023 as the base year, along with the key drivers, trends, and challenges. A holistic analysis of drivers will help companies refine their marketing strategies to gain a competitive advantage.
Market Driver
Industry-specific solutions is the key driver of the market. Deep learning has become a pivotal technology in addressing classification tasks across numerous industrie
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
decision trees
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
As per Cognitive Market Research's latest published report, the Global Machine Learning market size was USD 24,345.76 million in 2021 and it is forecasted to reach USD 206,235.41 million by 2028. Machine Learning Industry's Compound Annual Growth Rate will be 42.64% from 2023 to 2030. What is Driving Machine Learning Market?
COVID-19 Impact:
Similar to other industries, the covid-19 situation has affected the machine learning industry. Despite the dire conditions and uncertain collapse, some industries have continued to grow during the pandemic. During covid 19, the machine learning market remains stable with positive growth and opportunities. The global machine learning market faces minimal impact compared to some other industries.The growth of the global machine learning market has stagnated owing to automation developments and technological advancements. Pre-owned machines and smartphones widely used for remote work are leading to positive growth of the market. Several industries have transplanted the market progress using new technologies of machine learning systems. June 2020, DeCaprio et al. Published COVID-19 pandemic risk research is still in its early stages. In the report, DeCaprio et al. mentions that it has used machine learning to build an initial vulnerability index for the coronavirus. The lab further noted that as more data and results from ongoing research become available, it will be able to see more practical applications of machine learning in predicting infection risk.
Machine Learning Market Drivers:
Growing use of the technology and automation is a major factor is expected to drive the growth of the global machine learning market. Increasing need of machine learning from the media and entertainment, automobiles, IT and telecommunications, education, and other government and non-government sectors are factors driving the growth of the global machine learning market over the forecast period. In October 2022, Bharat Electronics (BEL) announced the signing of an agreement with Meslova to develop products and services in artificial intelligence and machine learning to develop air defense (AD) systems and platforms for the armed forces. Meslova uses artificial intelligence to develop domain-specific products and applications for some of the largest governments and corporations. Increasing technology advancements to higher accuracy of systems coupled with demand of various system based on machine learning such as voice recognition systems, image recognition system and recommender systems which is expected to support the growth in the near future. Furthermore, introduction of self-driving automobiles and significant expenditures in AI is another factor expected to fuel the growth of the global market over the forecast year.
Machine Learning Market: Restraints
The lack of skilled and experienced employees in the machine learning is a major factor expected to decline growth of the target market to a certain extent. In addition, network hardware issues, delicate data security, and ethical allegations in the algorithms is expected to hamper growth of the potential market in the near future. However, the high deployment cost is another factor that could pose as a hindrance in the growth of global market.
Machine Learning Market: Opportunities
During covid 19, industries and organizations in almost all regions are using remote working and working from home. It increases the use of machines, smartphones and other technological devices. Schools, colleges, government and non-government sectors are using machines developed by AI systems. Therefore, according to the machine learning market forecast report, the technology and machine learning are in high demand and will increase in the future. Organizations and other organizational sectors are investing more in building A-based technologies to benefit the global market. These are the major machine learning market opportunities to watch during the forecast period. What is Machine Learning?
Machine learning (ML) is a subdivision of artificial intelligence (AI). It is a method of data analysis that teaches computers to learn from algorithms and data, quickly mimicking the way humans learn. The technique focuses primarily on developing a program that can access data and use it to learn for itself. Machine learning enables machines to learn directly from data, experience, and examples. Additionally, ma...
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global machine learning market is projected to witness a remarkable growth trajectory, with the market size estimated to reach USD 21.17 billion in 2023 and anticipated to expand to USD 209.91 billion by 2032, growing at a compound annual growth rate (CAGR) of 29.2% over the forecast period. This extraordinary growth is primarily propelled by the escalating demand for artificial intelligence-driven solutions across various industries. As businesses seek to leverage machine learning for improving operational efficiency, enhancing customer experience, and driving innovation, the market is poised to expand rapidly. Key factors contributing to this growth include advancements in data generation, increasing computational power, and the proliferation of big data analytics.
A pivotal growth factor for the machine learning market is the ongoing digital transformation across industries. Enterprises globally are increasingly adopting machine learning technologies to optimize their operations, streamline processes, and make data-driven decisions. The healthcare sector, for example, leverages machine learning for predictive analytics to improve patient outcomes, while the finance sector uses machine learning algorithms for fraud detection and risk assessment. The retail industry is also utilizing machine learning for personalized customer experiences and inventory management. The ability of machine learning to analyze vast amounts of data in real-time and provide actionable insights is fueling its adoption across various applications, thereby driving market growth.
Another significant growth driver is the increasing integration of machine learning with the Internet of Things (IoT). The convergence of these technologies enables the creation of smarter, more efficient systems that enhance operational performance and productivity. In manufacturing, for instance, IoT devices equipped with machine learning capabilities can predict equipment failures and optimize maintenance schedules, leading to reduced downtime and costs. Similarly, in the automotive industry, machine learning algorithms are employed in autonomous vehicles to process and analyze sensor data, improving navigation and safety. The synergistic relationship between machine learning and IoT is expected to further propel market expansion during the forecast period.
Moreover, the rising investments in AI research and development by both public and private sectors are accelerating the advancement and adoption of machine learning technologies. Governments worldwide are recognizing the potential of AI and machine learning to transform industries, leading to increased funding for research initiatives and innovation centers. Companies are also investing heavily in developing cutting-edge machine learning solutions to maintain a competitive edge. This robust investment landscape is fostering an environment conducive to technological breakthroughs, thereby contributing to the growth of the machine learning market.
Supervised Learning, a subset of machine learning, plays a crucial role in the advancement of AI-driven solutions. It involves training algorithms on a labeled dataset, allowing the model to learn and make predictions or decisions based on new, unseen data. This approach is particularly beneficial in applications where the desired output is known, such as in classification or regression tasks. For instance, in the healthcare sector, supervised learning algorithms are employed to analyze patient data and predict health outcomes, thereby enhancing diagnostic accuracy and treatment efficacy. Similarly, in finance, these algorithms are used for credit scoring and fraud detection, providing financial institutions with reliable tools for risk assessment. As the demand for precise and efficient AI applications grows, the significance of supervised learning in driving innovation and operational excellence across industries becomes increasingly evident.
From a regional perspective, North America holds a dominant position in the machine learning market due to the early adoption of advanced technologies and the presence of major technology companies. The region's strong focus on R&D and innovation, coupled with a well-established IT infrastructure, further supports market growth. In addition, Asia Pacific is emerging as a lucrative market for machine learning, driven by rapid industrialization, increasing digitalization, and government initiatives promoting AI adoption. The region is witnessing significant investments in AI technologies, particu
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Machine Learning As A Service Market report segments the industry into By Application (Marketing And Advertisement, Predictive Maintenance, and more), By Organization Size (Small And Medium Enterprises, Large Enterprises), By End User (IT And Telecom, Automotive, Healthcare, and more), and By Geography (North America, Europe, Asia, Australia And New Zealand, Latin America, Middle East And Africa).
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Machine Learning Market size was valued at USD 19.20 USD billion in 2023 and is projected to reach USD 166.93 USD billion by 2032, exhibiting a CAGR of 36.2 % during the forecast period. The rising adoption of artificial intelligence (AI) and machine learning (ML) algorithms across various industries is a key factor driving this growth. Machine learning (ML) is a discipline of artificial intelligence that provides machines with the ability to automatically learn from data and past experiences while identifying patterns to make predictions with minimal human intervention. Machine learning methods enable computers to operate autonomously without explicit programming. ML applications feed new data and learn by themselves, which in return, they can grow, develop and adapt. In machine learning, the machine uses algorithms to draw meaningful insights from a large volume of data by scanning the data sets and learning from their own experiences. ML algorithms use computational methods to get direct knowledge by learning from data rather than by postulating any given equation that may act as a model. Machine learning is now used everywhere commercially like recommending items to customers based on previous purchases, foretelling stock market trends, and translating the text from one language to another. Key drivers for this market are: Growing Adoption of Mobile Commerce to Augment the Demand for Virtual Fitting Room Tool . Potential restraints include: Technical Limitations and Lack of Accuracy to Impede Market Progress. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.
https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy
The automated machine learning market had an estimated market share worth US$ 700 million in 2023, and it is predicted to reach a global market valuation of US$ 42.2 billion by 2034, growing at a steady CAGR of 44.9% from 2024 to 2034.
Report Attribute | Details |
---|---|
Estimated Market Value for 2023 | US$ 700 million |
Expected Market Value for 2024 | US$ 1 billion |
Projected Forecast Value for 2034 | US$ 42.2 billion |
Anticipated Growth Rate from 2024 to 2034 | 4 4.9% CAGR |
Automated Machine Learning Market Historical Analysis from 2019 to 2023 vs. Forecast Outlook from 2024 to 2034
Historical CAGR from 2019 to 2023 | 48.2% |
---|---|
Forecast CAGR from 2024 to 2034 | 44.9% |
Category-wise Insights
Solution Type | Standalone |
---|---|
CAGR from 2024 to 2034 | 44.7% |
Automation Type | Feature Engineering |
---|---|
Market Share in 2024 | 44.5% |
Region-wise Analysis
Countries | CAGR from 2024 to 2034 |
---|---|
The United States | 45% |
The United Kingdom | 46.1% |
China | 45.4% |
Japan | 46% |
South Korea | 47.2% |
Report Scope
Report Attribute | Details |
---|---|
Growth Rate | CAGR of 44.9% from 2024 to 2034 |
Market value in 2024 | US$ 1 billion |
Market value in 2034 | US$ 42.2 billion |
Base Year for Estimation | 2023 |
Historical Data | 2019 to 2023 |
Forecast Period | 2024 to 2034 |
Quantitative Units | US$ billion for value |
Report Coverage | Revenue Forecast, Company Ranking, Competitive Landscape, Growth Factors, Trends, and Pricing Analysis |
Segments Covered |
|
Regions Covered |
|
Countries Profiled |
|
Key Companies Profiled |
|
Customization Scope | Available on Request |
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Get key insights from Market Research Intellect's Cloud Machine Learning Market Report, valued at USD 12.1 billion in 2024, and forecast to grow to USD 53.5 billion by 2033, with a CAGR of 23.2% (2026-2033).
https://www.skyquestt.com/privacy/https://www.skyquestt.com/privacy/
Machine Learning Market size was valued at USD 48.04 Billion in 2023 and is poised to grow from USD 64.47 Billion in 2024 to USD 678.27 Billion by 2032, growing at a CAGR of 34.20% during the forecast period (2025-2032).
Deep Learning Market Size 2024-2028
The deep learning market size is forecast to increase by USD 10.85 billion at a CAGR of 26.06% between 2023 and 2028.
Deep learning technology is revolutionizing various industries, including healthcare. In the healthcare sector, deep learning is being extensively used for the diagnosis and treatment of musculoskeletal and inflammatory disorders. The market for deep learning services is experiencing significant growth due to the increasing availability of high-resolution medical images, electronic health records, and big data. Medical professionals are leveraging deep learning technologies for disease indications such as failure-to-success ratio, image interpretation, and biomarker identification solutions. Moreover, with the proliferation of data from various sources such as social networks, smartphones, and IoT devices, there is a growing need for advanced analytics techniques to make sense of this data. Companies In the market are collaborating to offer comprehensive information services and digital analytical solutions. However, the lack of technical expertise among medical professionals poses a challenge to the widespread adoption of deep learning technologies. The market is witnessing an influx of startups, which is intensifying the competition. Deep learning services are being integrated with compatible devices for image processing and prognosis. Molecular data analysis is another area where deep learning technologies are making a significant impact.
What will be the Size of the Deep Learning Market During the Forecast Period?
Request Free Sample
A subset of machine learning and artificial intelligence (AI), is a computational method inspired by the structure and function of the human brain. This technology utilizes neural networks, a type of machine learning model, to recognize patterns and learn from data. In the US market, deep learning is gaining significant traction due to its ability to process large amounts of data and extract meaningful insights. The market In the US is driven by several factors. One of the primary factors is the increasing availability of big data.
Moreover, with the proliferation of data from various sources such as social networks, smartphones, and IoT devices, there is a growing need for advanced analytics techniques to make sense of this data. Deep learning algorithms, with their ability to learn from vast amounts of data, are well-positioned to address this need. Another factor fueling the growth of the market In the US is the increasing adoption of cloud-based technology. Cloud-based solutions offer several advantages, including scalability, flexibility, and cost savings. These solutions enable organizations to process large datasets and train complex models without the need for expensive hardware.
How is this Industry segmented and which is the largest segment?
The industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Application
Image recognition
Voice recognition
Video surveillance and diagnostics
Data mining
Type
Software
Services
Hardware
Geography
North America
Canada
US
Europe
Germany
UK
APAC
China
South America
Middle East and Africa
By Application Insights
The image recognition segment is estimated to witness significant growth during the forecast period.
In the realm of artificial intelligence (AI), image recognition holds significant value, particularly in sectors such as banking and finance (BFSI). This technology's ability to accurately identify and categorize images is invaluable, as extensive image repositories In these industries cannot be easily forged. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. For instance, social media platforms like Facebook employ this technology to correctly identify and assign images to the right user account with an impressive accuracy rate of approximately 98%. Moreover, AI image recognition plays a crucial role in eliminating fraudulent social media accounts.
Get a glance at the report of share of various segments Request Free Sample
The image recognition segment was valued at USD 1.05 billion in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 36% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions, Reques
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global machine learning tools market is projected to grow from USD 22.6 billion in 2025 to USD 108.1 billion by 2033, at a CAGR of 22.5% during the forecast period. The increasing demand for data-driven decision-making, the growing adoption of cloud computing, and the advancements in artificial intelligence (AI) are driving the growth of this market. The market is dominated by a few key players, including Microsoft, IBM, Google, RStudio, Amazon, Oracle, Meta Platforms, Kira, Databricks, DataRobot, OpenText, Scikit-learn, Catalyst, XGBoost, and LightGBM. The on-premises segment is expected to hold the largest market share throughout the forecast period. However, the cloud-based segment is expected to exhibit the highest CAGR during the forecast period. The retail segment is expected to be the largest application segment throughout the forecast period. The healthcare segment is expected to exhibit the highest CAGR during the forecast period. The North America region is expected to be the largest market for machine learning tools throughout the forecast period. The Asia Pacific region is expected to exhibit the highest CAGR during the forecast period. The major factors restraining the growth of this market include the lack of skilled professionals, the high cost of implementation, and the security concerns associated with the use of these tools. The global machine learning (ML) tools market is anticipated to grow to USD 25 billion by 2025, expanding rapidly at a CAGR of 22.5%. The increasing adoption of artificial intelligence (AI) and ML across various industries drives this growth.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data