Users can browse the map interactively or search by lot ID or address. Available basemaps include aerial images, topographic contours, roads, town landmarks, conserved lands, and individual property boundaries. Overlays display landuse, zoning, flood, water resources, and soil characteristics in relation to neighborhoods or parcels. Integration with Google Street View offers enhanced views of the 2D map location. Other functionality includes map markup, printing, viewing the property record card, and links to official tax maps where available.NRPC's implementation of MapGeo dates back to 2013, however it is the decades of foundational GIS data development at NRPC and partner agencies that has enabled its success. NRPC refreshes the assessing data yearly; the map data is maintained in an ongoing manner.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Approximate boundaries for all land parcels in New Brunswick. The boundaries are structured as Polygons. The Property Identifier number or PID is included for each parcel.
NZ Parcel Boundaries Wireframe provides a map of land, road and other parcel boundaries, and is especially useful for displaying property boundaries.
This map service is for visualisation purposes only and is not intended for download. You can download the full parcels data from the NZ Parcels dataset.
This map service provides a dark outline and transparent fill, making it perfect for overlaying on our basemaps or any map service you choose.
Data for this map service is sourced from the NZ Parcels dataset which is updated weekly with authoritative data direct from LINZ’s Survey and Title system. Refer to the NZ Parcel layer for detailed metadata.
To simplify the visualisation of this data, the map service filters the data from the NZ Parcels layer to display parcels with a status of 'current' only.
This map service has been designed to be integrated into GIS, web and mobile applications via LINZ’s WMTS and XYZ tile services. View the Services tab to access these services.
See the LINZ website for service specifications and help using WMTS and XYZ tile services and more information about this service.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
California Department of Transportation (Caltrans), Division of Transportation Planning, Aeronautics Program provided airport layout drawings with estimated digitized airport property or fence lines with Google Pro images background.
Caltrans Division of Research, Innovation and System Information (DRISI) GIS office digitized the airport boundary lines with Bing Maps Aerial background and built the boundary lines into a GIS polygon feature class.
Generally, Airport Layout Plans do not show complete connected property or fence lines. In many cases the boundary lines were interpreted among the property and fence lines with our best judgment. The airport general information derived from FAA Airport Master Record and Reports with their URL are included in the attribute table.
Airport boundary data is intended for general reference and does not represent official airport property boundary determinations.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This data provides the integrated cadastral framework for Canada Lands. The cadastral framework consists of active and superseded cadastral parcel, roads, easements, administrative areas, active lines, points and annotations. The cadastral lines form the boundaries of the parcels. COGO attributes are associated to the lines and depict the adjusted framework of the cadastral fabric. The cadastral annotations consist of lot numbers, block numbers, township numbers, etc. The cadastral framework is compiled from Canada Lands Survey Records (CLSR), registration plans (RS) and location sketches (LS) archived in the Canada Lands Survey Records.
California department of transportation (Caltrans), Division of Aeronautics provided airport layout drawings with estimated digitized airport property or fence lines with Google Pro images background.
Caltrans Division of Research, Innovation and System Information (DRISI) GIS office digitized the airport boundary lines with Bing Maps Aerial background and built the boundary lines into a GIS polygon feature class.
Generally, Airport Layout Plans do not show complete connected property or fence lines. In many cases the boundary lines were interpreted among the property and fence lines with our best judgement. The airport general information derived from FAA Aiport Master Record and Reports with their URL are included in the attribute table.
Airport boundary data is intended for general reference and does not represent official airport property boundary determinations.
The Digital Geologic-GIS Map of Wilson's Creek National Battlefield and Vicinity, Missouri is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (wicr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (wicr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (wicr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (wicr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (wicr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (wicr_geology_metadata_faq.pdf). Please read the wicr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Missouri Department of Natural Resources, Division of Geology and Land Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wicr_geology_metadata.txt or wicr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of a Portion of Yucca House National Monument, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (yuho_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yuho_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (yuho_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yuho_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yuho_geology_metadata_faq.pdf). Please read the yuho_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yuho_geology_metadata.txt or yuho_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:12,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Global Land Survey (GLS) 1975 is a global collection of imagery from the Landsat Multispectral Scanner (MSS). Most scenes were acquired by Landsat 1-3 in 1972-1983. A few gaps in the Landsat 1-3 data have been filled with scenes acquired by Landsat 4-5 during the years 1982-1987. These data …
Annual (1986-2020) land-use/land cover maps at 30-meter resolution of the Tucson metropolitan area, Arizona and the greater Santa Cruz Watershed including Nogales, Sonora, Mexico. Maps were created using a combination of Landsat imagery, derived transformation and indices, texture analysis and other ancillary data fed to a Random Forest classifier in Google Earth Engine. The maps contain 13 classes based on the National Land Cover Classification scheme and modified to reflect local land cover types. Data are presented as a stacked, multi-band raster with one "band" for each year (Band 1 = 1986, Band 2 = 1987 and so on). Note that the year 2012 was left out of our time series because of lack of quality Landsat data. A color file (.clr) is included that can be imported to match the color of the National Land Cover Classification scheme. This data release also contains two JavaScript files with the Google Earth Engine code developed for pre-processing Landsat imagery and for image classification, and a zip folder "Accuracy Data" with five excel files: 1) Accuracy Statistics describing overall accuracy for each LULC year, 2) Confusion Matrices for each LULC year, 3) Land Cover Evolution - changes in pixel count for each class per year, 4) LULC Change Matrix - to and from class changes over the period, and 5) Variable Importance - results of the Random Forest Classification.
The Maine Geoparcel Viewer Application allows users to search and view available digital parcel data for Organized Townships and Unorganized Territories in the State of Maine. The Maine GeoLibrary and the Maine Office of GIS do not maintain parcel data for communities, cannot verify parcel ownership, and are not responsible for individual parcel data verification or updating emergency records concerning parcel addresses. If you have questions about a specific parcel, please contact the appropriate Town Office or County Registry of Deeds for the most up-to-date information.Within Maine, real property data is maintained by the government organization responsible for assessing and collecting property tax for a given location. Organized towns and townships maintain authoritative data for their communities and may voluntarily submit these data to the Maine GeoLibrary Parcel Project. The "Maine Parcels Organized Towns Feature" layer and "Maine Parcels Organized Towns ADB" table are the product of these voluntary submissions. Communities provide updates to the Maine GeoLibrary on a non-regular basis, which affects the currency of Maine GeoLibrary parcels data; some data are more than ten years old. Please contact the appropriate Town Office or the County Registry of Deeds for more up-to-date parcel information. Organized Town data should very closely match registry information, except in the case of in-process property conveyance transactions.In Unorganized Territories (defined as those regions of the state without a local government that assesses real property and collects property tax), Maine Revenue Services is the authoritative source for parcel data. The "Maine Parcels Unorganized Territory" layer is the authoritative GIS data layer for the Unorganized Territories. However, it must always be used with auxiliary data obtained from the online resources of Maine Revenue Services to compile up-to-date parcel ownership information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statewide soil and land information can be discovered and viewed through eSPADE or SEED. Datasets include soil profiles, soil landscapes, soil and land resources, acid sulfate soil risk mapping, hydrogeological landscapes, land systems and land use. There are also various statewide coverages of specific soil and land characteristics, such as soil type, land and soil capability, soil fertility, soil regolith, soil hydrology and modelled soil properties.
Both eSPADE and SEED enable soil and land data to be viewed on a map. SEED focuses more on the holistic approach by enabling you to add other environmental layers such as mining boundaries, vegetation or water monitoring points. SEED also provides access to metadata and data quality statements for layers.
eSPADE provides greater functions and allows you to drill down into soil points or maps to access detailed information such as reports and images. You can navigate to a specific location, then search and select multiple objects and access detailed information about them. You can also export spatial information for use in other applications such as Google Earth™ and GIS software.
eSPADE is a free Internet information system and works on desktop computers, laptops and mobile devices such as smartphones and tablets and uses a Google maps-based platform familiar to most users. It has over 42,000 soil profile descriptions and approximately 4,000 soil landscape descriptions. This includes the maps and descriptions from the Soil Landscape Mapping program. eSPADE also includes the base maps underpinning Biophysical Strategic Agricultural Land (BSAL).
For more information on eSPADE visit: https://www.environment.nsw.gov.au/topics/land-and-soil/soil-data/espade
The Unpublished Digital Surficial Geologic-GIS Map of Tuzigoot National Monument, Arizona is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (clar_surficial_geology.gdb), a 10.1 ArcMap (.MXD) map document (clar_surficial_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (moca_tuzi_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (moca_tuzi_geology_gis_readme.pdf). Please read the moca_tuzi_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Arizona Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (clar_surficial_geology_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/tuzi/clar_surficial_geology_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Tuzigoot National Monument.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
ParcelMap BC is the current, complete and trusted mapped representation of titled and Crown land parcels across British Columbia, considered to be the point of truth for the graphical representation of property boundaries. It is not the authoritative source for the legal property boundary or related records attributes; this will always be the plan of survey or the related registry information. This particular dataset is a subset of the complete ParcelMap BC data and is comprised of the parcel fabric and attributes for over two million parcels published under the Open Government Licence - British Columbia. Notes: 1. Parcel title information is sourced from the BC Land Title Register. Title questions should be directed to a local Land Title Office. 2. This dataset replaces the Integrated Cadastral Fabric.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Cooperative Land Cover Map is a project to develop an improved statewide land cover map from existing sources and expert review of aerial photography. The project is directly tied to a goal of Florida's State Wildlife Action Plan (SWAP) to represent Florida's diverse habitats in a spatially-explicit manner. The Cooperative Land Cover Map integrates 3 primary data types: 1) 6 million acres are derived from local or site-specific data sources, primarily on existing conservation lands. Most of these sources have a ground-truth or local knowledge component. We collected land cover and vegetation data from 37 existing sources. Each dataset was evaluated for consistency and quality and assigned a confidence category that determined how it was integrated into the final land cover map. 2) 1.4 million acres are derived from areas that FNAI ecologists reviewed with high resolution aerial photography. These areas were reviewed because other data indicated some potential for the presence of a focal community: scrub, scrubby flatwoods, sandhill, dry prairie, pine rockland, rockland hammock, upland pine or mesic flatwoods. 3) 3.2 million acres are represented by Florida Land Use Land Cover data from the FL Department of Environmental Protection and Water Management Districts (FLUCCS). The Cooperative Land Cover Map integrates data from the following years: NWFWMD: 2006 - 07 SRWMD: 2005 - 08 SJRWMD: 2004 SFWMD: 2004 SWFWMD: 2008 All data were crosswalked into the Florida Land Cover Classification System. This project was funded by a grant from FWC/Florida's Wildlife Legacy Initiative (Project 08009) to Florida Natural Areas Inventory. The current dataset is provided in 10m raster grid format.Changes from Version 1.1 to Version 2.3:CLC v2.3 includes updated Florida Land Use Land Cover for four water management districts as described above: NWFWMD, SJRWMD, SFWMD, SWFWMDCLC v2.3 incorporates major revisions to natural coastal land cover and natural communities potentially affected by sea level rise. These revisions were undertaken by FNAI as part of two projects: Re-evaluating Florida's Ecological Conservation Priorities in the Face of Sea Level Rise (funded by the Yale Mapping Framework for Biodiversity Conservation and Climate Adaptation) and Predicting and Mitigating the Effects of Sea-Level Rise and Land Use Changes on Imperiled Species and Natural communities in Florida (funded by an FWC State Wildlife Grant and The Kresge Foundation). FNAI also opportunistically revised natural communities as needed in the course of species habitat mapping work funded by the Florida Department of Environmental Protection. CLC v2.3 also includes several new site specific data sources: New or revised FNAI natural community maps for 13 conservation lands and 9 Florida Forever proposals; new Florida Park Service maps for 10 parks; Sarasota County Preserves Habitat Maps (with FNAI review); Sarasota County HCP Florida Scrub-Jay Habitat (with FNAI Review); Southwest Florida Scrub Working Group scrub polygons. Several corrections to the crosswalk of FLUCCS to FLCS were made, including review and reclassification of interior sand beaches that were originally crosswalked to beach dune, and reclassification of upland hardwood forest south of Lake Okeechobee to mesic hammock. Representation of state waters was expanded to include the NOAA Submerged Lands Act data for Florida.Changes from Version 2.3 to 3.0: All land classes underwent revisions to correct boundaries, mislabeled classes, and hard edges between classes. Vector data was compared against high resolution Digital Ortho Quarter Quads (DOQQ) and Google Earth imagery. Individual land cover classes were converted to .KML format for use in Google Earth. Errors identified through visual review were manually corrected. Statewide medium resolution (spatial resolution of 10 m) SPOT 5 images were available for remote sensing classification with the following spectral bands: near infrared, red, green and short wave infrared. The acquisition dates of SPOT images ranged between October, 2005 and October, 2010. Remote sensing classification was performed in Idrisi Taiga and ERDAS Imagine. Supervised and unsupervised classifications of each SPOT image were performed with the corrected polygon data as a guide. Further visual inspections of classified areas were conducted for consistency, errors, and edge matching between image footprints. CLC v3.0 now includes state wide Florida NAVTEQ transportation data. CLC v3.0 incorporates extensive revisions to scrub, scrubby flatwoods, mesic flatwoods, and upland pine classes. An additional class, scrub mangrove – 5252, was added to the crosswalk. Mangrove swamp was reviewed and reclassified to include areas of scrub mangrove. CLC v3.0 also includes additional revisions to sand beach, riverine sand bar, and beach dune previously misclassified as high intensity urban or extractive. CLC v3.0 excludes the Dry Tortugas and does not include some of the small keys between Key West and Marquesas.Changes from Version 3.0 to Version 3.1: CLC v3.1 includes several new site specific data sources: Revised FNAI natural community maps for 31 WMAs, and 6 Florida Forever areas or proposals. This data was either extracted from v2.3, or from more recent mapping efforts. Domains have been removed from the attribute table, and a class name field has been added for SITE and STATE level classes. The Dry Tortugas have been reincorporated. The geographic extent has been revised for the Coastal Upland and Dry Prairie classes. Rural Open and the Extractive classes underwent a more thorough reviewChanges from Version 3.1 to Version 3.2:CLC v3.2 includes several new site specific data sources: Revised FNAI natural community maps for 43 Florida Park Service lands, and 9 Florida Forever areas or proposals. This data is from 2014 - 2016 mapping efforts. SITE level class review: Wet Coniferous plantation (2450) from v2.3 has been included in v3.2. Non-Vegetated Wetland (2300), Urban Open Land (18211), Cropland/Pasture (18331), and High Pine and Scrub (1200) have undergone thorough review and reclassification where appropriate. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.2.5 to Version 3.3: The CLC v3.3 includes several new site specific data sources: Revised FNAI natural community maps for 14 FWC managed or co-managed lands, including 7 WMA and 7 WEA, 1 State Forest, 3 Hillsboro County managed areas, and 1 Florida Forever proposal. This data is from the 2017 – 2018 mapping efforts. Select sites and classes were included from the 2016 – 2017 NWFWMD (FLUCCS) dataset. M.C. Davis Conservation areas, 18331x agricultural classes underwent a thorough review and reclassification where appropriate. Prairie Mesic Hammock (1122) was reclassified to Prairie Hydric Hammock (22322) in the Everglades. All SITE level Tree Plantations (18333) were reclassified to Coniferous Plantations (183332). The addition of FWC Oyster Bar (5230) features. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com, including classification corrections to sites in T.M. Goodwin and Ocala National Forest. CLC v3.3 utilizes the updated The Florida Land Cover Classification System (2018), altering the following class names and numbers: Irrigated Row Crops (1833111), Wet Coniferous Plantations (1833321) (formerly 2450), Major Springs (4131) (formerly 3118). Mixed Hardwood-Coniferous Swamps (2240) (formerly Other Wetland Forested Mixed).Changes from Version 3.4 to Version 3.5: The CLC v3.5 includes several new site specific data sources: Revised FNAI natural community maps for 16 managed areas, and 10 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2019 – 2020 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. This version of the CLC is also the first to include land identified as Salt Flats (5241).Changes from Version 3.5 to 3.6: The CLC v3.6 includes several new site specific data sources: Revised FNAI natural community maps for 11 managed areas, and 24 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2018 – 2022 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.6 to 3.7: The CLC 3.7 includes several new site specific data sources: Revised FNAI natural community maps for 5 managed areas (2022-2023). Revised Palm Beach County Natural Areas data for Pine Glades Natural Area (2023). Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. In this version a few SITE level classifications are reclassified for the STATE level classification system. Mesic Flatwoods and Scrubby Flatwoods are classified as Dry Flatwoods at the STATE level. Upland Glade is classified as Barren, Sinkhole, and Outcrop Communities at the STATE level. Lastly Upland Pine is classified as High Pine and Scrub at the STATE level.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identifies location, the type of sport played and condition, age and other details about the recreational facility. Data contains approximately 80 types of sport including private gyms and fitness centres. The location of facilities was checked using a range of spatial data including current aerial photos, LGA and property boundaries as well as Google maps. If feasible they were geocoded via Victorian Mapping Address System (VMAS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identifies location, the type of sport played and condition, age and other details about the recreational facility. Data contains approximately 80 types of sport including private gyms and fitness centres. The location of facilities was checked using a range of spatial data including current aerial photos, LGA and property boundaries as well as Google maps. If feasible they were geocoded via Victorian Mapping Address System (VMAS).
The Unpublished Digital Geologic Map of Bering Land Bridge National Preserve and Vicinity, Alaska is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (bela_geology.gdb), a 10.1 ArcMap (.MXD) map document (bela_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (bela_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (bela_gis_readme.pdf). Please read the bela_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (bela_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/bela/bela_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:500,000 and United States National Map Accuracy Standards features are within (horizontally) 254 meters or 833.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.2. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone AD_1983_Alaska_AlbersN, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Bering Land Bridge National Preserve.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A book of one km2 sampling cell habitat cover maps generated using the OSi PRIME 2 dataset (OSi 2022a) and enhanced using OSi orthoimagery and Google Street View interpretation. The book includes two sets of 15 sampling cells: 1) a baseline set generated using OSi Ortho 2000 imagery [reference year: 2000], and 2) a second, updated set generated using OSi Digital Globe imagery reference year: 2013
References: OSi, 2022a. PRIME2 Data, The National Map. Ordinance Survey Ireland. 〈https://osi.ie/about/future-developments/the-national-map/〉. (Accessed 1 May 2021). OSi, 2022b. Aerial Imagery Maps and Data. Ordinance Survey Ireland. 〈https://osi.ie/products/professional-mapping/osi-aerial-imagery/〉. (Accessed 1 May 2021).
Vector polygon map data of city limits from Houston, Texas containing 731 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
Users can browse the map interactively or search by lot ID or address. Available basemaps include aerial images, topographic contours, roads, town landmarks, conserved lands, and individual property boundaries. Overlays display landuse, zoning, flood, water resources, and soil characteristics in relation to neighborhoods or parcels. Integration with Google Street View offers enhanced views of the 2D map location. Other functionality includes map markup, printing, viewing the property record card, and links to official tax maps where available.NRPC's implementation of MapGeo dates back to 2013, however it is the decades of foundational GIS data development at NRPC and partner agencies that has enabled its success. NRPC refreshes the assessing data yearly; the map data is maintained in an ongoing manner.