Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains property sales data, including information such as PropertyID, property type (e.g., Commercial or Residential), tax keys, property addresses, architectural styles, exterior wall materials, number of stories, year built, room counts, finished square footage, units (e.g., apartments), bedroom and bathroom counts, lot sizes, sale dates, and sale prices. Explore this dataset to gain insights into real estate trends and property characteristics.
Field Name | Description | Type |
---|---|---|
PropertyID | A unique identifier for each property. | text |
PropType | The type of property (e.g., Commercial or Residential). | text |
taxkey | The tax key associated with the property. | text |
Address | The address of the property. | text |
CondoProject | Information about whether the property is part of a condominium | text |
project (NaN indicates missing data). | ||
District | The district number for the property. | text |
nbhd | The neighborhood number for the property. | text |
Style | The architectural style of the property. | text |
Extwall | The type of exterior wall material used. | text |
Stories | The number of stories in the building. | text |
Year_Built | The year the property was built. | text |
Rooms | The number of rooms in the property. | text |
FinishedSqft | The total square footage of finished space in the property. | text |
Units | The number of units in the property | text |
(e.g., apartments in a multifamily building). | ||
Bdrms | The number of bedrooms in the property. | text |
Fbath | The number of full bathrooms in the property. | text |
Hbath | The number of half bathrooms in the property. | text |
Lotsize | The size of the lot associated with the property. | text |
Sale_date | The date when the property was sold. | text |
Sale_price | The sale price of the property. | text |
Data.milwaukee.gov, (2023). Property Sales Data. [online] Available at: https://data.milwaukee.gov [Accessed 9th October 2023].
Open Definition. (n.d.). Creative Commons Attribution 4.0 International Public License (CC BY 4.0). [online] Available at: http://www.opendefinition.org/licenses/cc-by [Accessed 9th October 2023].
In the realm of real estate data solutions, BatchData Property Data Search API emerges as a technical marvel, tailored for product and engineering leadership seeking robust and scalable solutions. This purpose-built API seamlessly integrates diverse datasets, offering over 600 data points, to provide a holistic view of property characteristics, valuation, homeowner information, listing data, county assessor details, photos, and foreclosure information. With state-of-the-art infrastructure and performance features, BatchData sets the standard for efficiency, reliability, and developer satisfaction.
Unraveling the Technical Prowess of BatchData Property Data Search API:
State-of-the-Art Infrastructure: At the heart of BatchData lies a state-of-the-art infrastructure that leverages the latest technologies available. Our systems are engineered to handle increased loads and growing datasets with ease, ensuring optimal performance without significant degradation. This commitment to technological advancement ensures that our data infrastructure and API systems operate at peak efficiency, even in the face of evolving demands and complexities.
Integration Capabilities: BatchData boasts integration capabilities that are second to none, thanks to our innovative data lake house architecture. This architecture empowers us to seamlessly integrate our data with any data platforms or pipelines in a matter of minutes. Whether it's connecting with existing data systems, third-party applications, or internal pipelines, our API offers limitless integration possibilities, enabling product and engineering teams to unlock the full potential of property data with minimal effort.
Developer Documentation: One of the hallmarks of BatchData is our clear and comprehensive developer documentation, which developers love. We understand the importance of providing developers with the resources they need to integrate our API seamlessly into their projects. Our documentation offers detailed guides, code samples, API reference materials, and best practices, empowering developers to hit the ground running and leverage the full capabilities of BatchData with confidence.
Performance Features: BatchData Property Search API is engineered for performance, delivering lightning-fast response times and seamless scalability. Our API is designed to efficiently handle increased loads and growing datasets, ensuring that users experience minimal latency and maximum reliability. Whether it's retrieving property data, conducting complex queries, or accessing real-time updates, our API delivers exceptional performance, empowering product and engineering teams to build high-performance applications and systems with ease. BatchData's APIs work for both residential real estate data and commercial real estate data.
Common Use Cases for BatchData Property Data Search API:
Powering Data-Driven Applications: Product and engineering teams can leverage BatchData Property Data Search API to power data-driven applications tailored for the real estate industry. Whether it's building real estate websites, mobile applications, or internal tools, our API offers comprehensive property data that can drive informed decision-making, enhance user experiences, and streamline operations.
Enabling Advanced Analytics: With BatchData, product and engineering leaders can unlock the power of advanced analytics and reporting capabilities. Our API provides access to rich property data, enabling analysts and researchers to uncover insights, identify trends, and make data-driven recommendations with confidence. Whether it's analyzing market trends, evaluating investment opportunities, or conducting competitive analysis, BatchData empowers teams to derive actionable insights from vast property datasets.
Optimizing Data Infrastructure: BatchData Property Data Search API can play a pivotal role in optimizing data infrastructure within organizations. By seamlessly integrating our API with existing data platforms and pipelines, product and engineering teams can streamline data workflows, improve data accessibility, and enhance overall data infrastructure efficiency. Our API's integration capabilities and performance features ensure that organizations can leverage property data seamlessly across their data ecosystem, driving operational excellence and innovation.
Conclusion: BatchData Property Data Search API stands at the forefront of real estate data solutions, offering product and engineering leaders a comprehensive, scalable, and high-performance API for accessing property data. With state-of-the-art infrastructure, seamless integration capabilities, clear developer documentation, and exceptional performance features, BatchData empowers teams to build data-driven applications, optimize data infrastructure, and unlock actionable insights with ease. As the real estate industry continues to evolve, BatchData remains committed to delivering innovative sol...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Gain an in-depth view of property characteristics for more than 157 million properties across the United States (also available at the state- and county-level).
This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.
Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.
Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.
Portfolios, development pipelines and property transactions for over 900 public real estate companies.
Real estate is a dynamic and ever-evolving industry that relies heavily on data to make informed decisions. One of the fundamental aspects of this industry is real estate listing data. This data encompasses detailed information about properties that are available for sale or rent in a given market. It plays a pivotal role in assisting buyers, sellers, real estate professionals, and investors in making well-informed choices. In this data brief, we will provide an overview of what real estate listing data is and highlight five key industry use cases.
Real Estate Listings Data Includes:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Property Price: YTD Avg: Overall data was reported at 9,510.153 RMB/sq m in Mar 2025. This records a decrease from the previous number of 9,547.228 RMB/sq m for Feb 2025. China Property Price: YTD Avg: Overall data is updated monthly, averaging 5,157.474 RMB/sq m from Dec 1995 (Median) to Mar 2025, with 352 observations. The data reached an all-time high of 11,029.538 RMB/sq m in Feb 2021 and a record low of 599.276 RMB/sq m in Feb 1996. China Property Price: YTD Avg: Overall data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Price – Table CN.PD: NBS: Property Price: Monthly.
Note:- Only publicly available real estate data can be worked upon.
Discover the world of property insights with APISCRAPY's user-friendly services – Realtor Property Data, Realtor Data, and Realtor API. Designed for ease of use, our platform allows anyone, from real estate professionals to researchers and businesses, to effortlessly access publicly available property listings and Property owner Data.
Our Realtor Property Data service provides comprehensive details on property listings, while Realtor API ensures easy integration for streamlined access. Additionally, we offer Zillow Property Data, enriching your property insights with information from one of the leading property platforms.
Key Features:
Realtor Property Data: Dive into detailed property listings effortlessly with our user-friendly platform.
Realtor API Integration: Seamlessly integrate our Realtor API into your systems for easy access to property data.
Zillow Property Data: Enrich your property insights with data from Zillow, one of the leading property platforms.
Publicly Available Property Listings: APISCRAPY ensures access to publicly available property listings, making property data easily accessible.
Easy Integration: Our platform is designed for simplicity, allowing for easy integration into your existing systems.
Whether you're a real estate professional, researcher, or business looking for straightforward access to property information, APISCRAPY's services cater to your needs. Choose us for simple and efficient property data services, where ease of use and accessibility come together for your convenience.
In 2023 and the first half of 2024, the largest property sale in the data center real estate market in Europe was DATA4 Paris-Saclay in Paris. In April 2023, Brookfield bought the 47,300 square meter property from AXA for an undisclosed price. The most expensive sale was Digital Frankfurt I. The valuation of the site was 270 million U.S. dollars and Digital Core REIT obtained 24.9 percent from Digital Realty.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 414000 USD in April from 403700 USD in March of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Commercial Real Estate Prices for United States (COMREPUSQ159N) from Q1 2005 to Q3 2024 about real estate, commercial, rate, and USA.
The U.S. housing market has slowed, after ** consecutive years of rising home prices. In 2021, house prices surged by an unprecedented ** percent, marking the highest increase on record. However, the market has since cooled, with the Freddie Mac House Price Index showing more modest growth between 2022 and 2024. In 2024, home prices increased by *** percent. That was lower than the long-term average of *** percent since 1990. Impact of mortgage rates on homebuying The recent cooling in the housing market can be partly attributed to rising mortgage rates. After reaching a record low of **** percent in 2021, the average annual rate on a 30-year fixed-rate mortgage more than doubled in 2023. This significant increase has made homeownership less affordable for many potential buyers, contributing to a substantial decline in home sales. Despite these challenges, forecasts suggest a potential recovery in the coming years. How much does it cost to buy a house in the U.S.? In 2023, the median sales price of an existing single-family home reached a record high of over ******* U.S. dollars. Newly built homes were even pricier, despite a slight decline in the median sales price in 2023. Naturally, home prices continue to vary significantly across the country, with West Virginia being the most affordable state for homebuyers.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Median Days on Market in the United States (MEDDAYONMARUS) from Jul 2016 to May 2025 about median and USA.
This table contains the information about the land including land sizes (square feet & acres) and land property type for properties within Fairfax County. There is a one to many relationship to the parcel data. Refer to this document for descriptions of the data in the table.
Explore detailed property listings with 140+ data points across the U.S., featuring daily updates in most markets. Get comprehensive insights into every listing, including price, property characteristics, and more. Your go-to resource for current and thorough real estate information.
Real Estate Market Size 2025-2029
The real estate market size is forecast to increase by USD 1,258.6 billion at a CAGR of 5.6% between 2024 and 2029.
The market is experiencing significant shifts and innovations, with both residential and commercial sectors adapting to new trends and challenges. In the commercial realm, e-commerce growth is driving the demand for logistics and distribution centers, while virtual reality technology is revolutionizing property viewings. Europe's commercial real estate sector is witnessing a rise in smart city development, incorporating LED lighting and data centers to enhance sustainability and efficiency. In the residential sector, wellness real estate is gaining popularity, focusing on health and well-being. Real estate software and advertising services are essential tools for asset management, streamlining operations, and reaching potential buyers. Regulatory uncertainty remains a challenge, but innovation in construction technologies, such as generators and renewable energy solutions, is helping mitigate risks.
What will be the Size of the Real Estate Market During the Forecast Period?
Request Free Sample
The market continues to exhibit strong activity, driven by rising population growth and increasing demand for personal household space. Both residential and commercial sectors have experienced a rebound in home sales and leasing activity. The trend towards live-streaming rooms and remote work has further fueled demand for housing and commercial real estate. Economic conditions and local market dynamics influence the direction of the market, with interest rates playing a significant role in investment decisions. Fully furnished, semi-furnished, and unfurnished properties, as well as rental properties, remain popular options for buyers and tenants. Offline transactions continue to dominate, but online transactions are gaining traction.
The market encompasses a diverse range of assets, including land, improvements, buildings, fixtures, roads, structures, utility systems, and undeveloped property. Vacant land and undeveloped property present opportunities for investors, while the construction and development of new housing and commercial projects contribute to the market's overall growth.
How is this Real Estate Industry segmented and which is the largest segment?
The industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Residential
Commercial
Industrial
Business Segment
Rental
Sales
Manufacturing Type
New construction
Renovation and redevelopment
Land development
Geography
APAC
China
India
Japan
South Korea
North America
Canada
US
Europe
Germany
UK
South America
Brazil
Middle East and Africa
By Type Insights
The residential segment is estimated to witness significant growth during the forecast period.
The market encompasses the buying and selling of properties designed for dwelling purposes, including buildings, single-family homes, apartments, townhouses, and more. Factors fueling growth in this sector include the increasing homeownership rate among millennials and urbanization trends. The Asia Pacific region, specifically China, dominates the market due to escalating homeownership rates. In India, the demand for affordable housing is a major driver, with initiatives like Pradhan Mantri Awas Yojana (PMAY) spurring the development of affordable housing projects catering to the needs of lower and middle-income groups. The commercial real estate segment, consisting of office buildings, shopping malls, hotels, and other commercial properties, is also experiencing growth.
Furthermore, economic and local market conditions, interest rates, and investment opportunities in fully furnished, semi-furnished, unfurnished properties, and rental properties influence the market dynamics. Technological integration, infrastructure development, and construction projects further shape the real estate landscape. Key sectors like transportation, logistics, agriculture, and the e-commerce sector also impact the market.
Get a glance at the market report of share of various segments Request Free Sample
The Residential segment was valued at USD 1440.30 billion in 2019 and showed a gradual increase during the forecast period.
Regional Analysis
APAC is estimated to contribute 64% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions, Request Free Sample
The Asia Pacific region holds the largest share of The market, dr
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Real Estate Market size was valued at USD 79.7 Trillion in 2024 and is projected to reach USD 103.6 Trillion by 2031, growing at a CAGR of 5.1% during the forecasted period 2024 to 2031
Global Real Estate Market Drivers
Population Growth and Urbanization: In order to meet the demands of businesses, housing needs, and infrastructure development, there is a constant need for residential and commercial properties as populations and urban areas rise.
Low Interest Rates: By making borrowing more accessible, low interest rates encourage both individuals and businesses to make real estate investments. Reduced borrowing costs result in reduced mortgage rates, opening up homeownership and encouraging real estate investments and purchases.
Economic Growth: A thriving real estate market is a result of positive economic growth indicators like GDP growth, rising incomes, and low unemployment rates. Robust economies establish advantageous circumstances for real estate investment, growth, and customer assurance in the housing sector. Job growth and income increases: As more people look for rental or purchase close to their places of employment, housing demand is influenced by these factors. The housing market is driven by employment opportunities and rising salaries, which in turn drive home buying, renting, and property investment activity. Infrastructure Development: The demand and property values in the surrounding areas can be greatly impacted by investments made in infrastructure projects such as public facilities, utilities, and transportation networks. Accessibility, convenience, and beauty are all improved by improved infrastructure, which encourages real estate development and investment.
Government Policies and Incentives: Tax breaks, subsidies, and first-time homebuyer programs are a few examples of government policies and incentives that can boost the real estate market and homeownership. Market stability and growth are facilitated by regulatory actions that promote affordable housing, urban redevelopment, and real estate development.
Foreign Investment: Foreign capital can be used to stimulate demand, diversify property portfolios, and pump capital into the real estate market through direct property purchases or real estate investment funds. Foreign investors are drawn to the local real estate markets by favorable exchange rates, stable political environments, and appealing returns.
Demographic Trends: Shifting demographic trends affect housing preferences and demand for various property kinds. These trends include aging populations, household formation rates, and migration patterns. It is easier for real estate developers and investors to match supply with changing market demand when they are aware of demographic fluctuations.
Technological Innovations: New technologies that are revolutionizing the marketing, transactions, and management of properties include digital platforms, data analytics, and virtual reality applications. In the real estate industry, technology adoption increases market reach, boosts customer experiences, and increases operational efficiency.
Environmental Sustainability: Decisions about real estate development and investment are influenced by the growing knowledge of environmental sustainability and green building techniques. Market activity in environmentally aware real estate categories is driven by demand for eco-friendly neighborhoods, sustainable design elements, and energy-efficient buildings.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Real Residential Property Prices for Hong Kong SAR (QHKR628BIS) from Q4 1979 to Q4 2024 about Hong Kong, residential, HPI, housing, real, price index, indexes, and price.
Our premier Zillow real estate listings dataset presents a comprehensive array of details about properties on the market for either purchase or lease. It encompasses nuanced data, including features of the property, geographical nuances, automated valuations, and area measurements, among many other attributes.
This dataset serves as an instrument for extracting insights on the prevailing trends in the real estate sector, evaluating the worth of properties, and crafting informed investment blueprints.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains property sales data, including information such as PropertyID, property type (e.g., Commercial or Residential), tax keys, property addresses, architectural styles, exterior wall materials, number of stories, year built, room counts, finished square footage, units (e.g., apartments), bedroom and bathroom counts, lot sizes, sale dates, and sale prices. Explore this dataset to gain insights into real estate trends and property characteristics.
Field Name | Description | Type |
---|---|---|
PropertyID | A unique identifier for each property. | text |
PropType | The type of property (e.g., Commercial or Residential). | text |
taxkey | The tax key associated with the property. | text |
Address | The address of the property. | text |
CondoProject | Information about whether the property is part of a condominium | text |
project (NaN indicates missing data). | ||
District | The district number for the property. | text |
nbhd | The neighborhood number for the property. | text |
Style | The architectural style of the property. | text |
Extwall | The type of exterior wall material used. | text |
Stories | The number of stories in the building. | text |
Year_Built | The year the property was built. | text |
Rooms | The number of rooms in the property. | text |
FinishedSqft | The total square footage of finished space in the property. | text |
Units | The number of units in the property | text |
(e.g., apartments in a multifamily building). | ||
Bdrms | The number of bedrooms in the property. | text |
Fbath | The number of full bathrooms in the property. | text |
Hbath | The number of half bathrooms in the property. | text |
Lotsize | The size of the lot associated with the property. | text |
Sale_date | The date when the property was sold. | text |
Sale_price | The sale price of the property. | text |
Data.milwaukee.gov, (2023). Property Sales Data. [online] Available at: https://data.milwaukee.gov [Accessed 9th October 2023].
Open Definition. (n.d.). Creative Commons Attribution 4.0 International Public License (CC BY 4.0). [online] Available at: http://www.opendefinition.org/licenses/cc-by [Accessed 9th October 2023].