The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The generalized boundaries of most incorporated places in this file are based on those as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CDPs are based on those delineated or updated as part of the the 2023 BAS or the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Geospatial data about St. Clair County, Alabama Parcels. Export to CAD, GIS, PDF, CSV and access via API.
(Taken from 11-digit Hydrologic Unit for Alabama abstract, http://www.gsa.state.al.us/gsa/gsa.html
This data set is a digital hydrologic unit boundary that is at the Watershed (11-digit) level for the State of Alabama. The data set was developed by delineating the boundary lines on base maps and digitizing the delineated lines. This data set consists of geo-referenced digital map data and attribute data. The map data, which were captured from 7 1/2 minute quadrangles, comprise a seamless data layer for the entire State of Alabama. All land area within the state can be characterized uniquely as being contained in one and only one hydrologic unit boundary at the 11-digit level. The hydrologic unit ID code attached to each delineated polygon is linked to the attribute data.
The Watershed hydrologic unit boundaries provide a uniquely identified and uniform method of subdividing large drainage areas. These smaller sized hydrologic units (up to 250,000 acres) are useful in many programs supported by federal and state agencies and others. These data are appropriate for use in GIS applications.
Boundary polygons for Alabama counties.
America's private forests provide a vast array of public goods and services, including abundant, clean surface water. Forest loss and development can affect water quality and quantity when forests are removed and impervious surfaces, such as paved roads, spread across the landscape. We rank watersheds across the conterminous United States according to the contributions of private forest land to surface drinking water and by threats to surface water from increased housing density. Private forest land contributions to drinking water are greatest in the East but are also important in Western watersheds. Development pressures on these contributions are concentrated in the Eastern United States but are also found in the North-Central region, parts of the West and Southwest, and the Pacific Northwest; nationwide, more than 55 million acres of rural private forest land are projected to experience a substantial increase in housing density from 2000 to 2030. Planners, communities, and private landowners can use a range of strategies to maintain freshwater ecosystems, including designing housing and roads to minimize impacts on water quality, managing home sites to protect water resources, and using payment schemes and management partnerships to invest in forest stewardship on public and private lands.This data is based on the digital hydrologic unit boundary layer to the Subwatershed (12-digit) 6th level for the continental United States. To focus this analysis on watersheds with private forests, only watersheds with at least 10% forested land and more than 50 acres of private forest were analyzed. All other watersheds were labeled ?Insufficient private forest for this analysis"and coded -99999 in the data table. This dataset updates forest and development statistics reported in the the 2011 Forests to Faucet analysis using 2006 National Land Cover Database for the Conterminous United States, Grid Values=41,42,43,95. and Theobald, Dr. David M. 10 March 2008. bhc2000 and bhc2030 (Housing density for the coterminous US in 2000 and 2030, respectively.) Field Descriptions:HUC_12: Twelve Digit Hydrologic Unit Code: This field provides a unique 12-digit code for each subwatershed.HU_12_DS: Sixth Level Downstream Hydrologic Unit Code: This field was populated with the 12-digit code of the 6th level hydrologic unit that is receiving the majority of the flow from the subwatershed.IMP1: Index of surface drinking water importance (Appendix Map). This field is from the 2011 Forests to Faucet analysis and has not been updated for this analysis.HDCHG_AC: Acres of housing density change on private forest in the subwatershed. HDCHG_PER: Percent of the watershed to experience housing density change on private forest. IMP_HD_PFOR: Index Private Forest importance to Surface Drinking Water with Development Pressure - identifies private forested areas important for surface drinking water that are likely to be affected by future increases in housing density, Ptle_IMP_HD: Private Forest importance to Surface Drinking Water with Development Pressure (Figure 7), percentile. Ptle_HDCHG: Percentage of each subwatershed to Experience an increase in House Density in Private Forest (Figure 6), percentile. FOR_AC: Acres forest (2006) in the subwatershed. PFOR_AC: Acres private forest (2006) in the subwatershed. PFOR_PER: Percent of the subwatershed that is private forest. HU12_AC: Acreage of the subwatershedFOR_PER: Percent of the subwatershed that is forest. PFOR_IMP: Index of Private Forest Importance to Surface Drinking Water. .Ptle_PFIMP: Private forest importance to surface drinking water(Figure 4), percentile. TOP100: Top 100 subwatersheds. 50 from the East, 50 from the west (using the Mississippi River as the divide.) Metadata
This dataset represents a compilation of vector upland boundary lines, upland boundary points, and transects with rates for the Point Aux Chenes and Grand Bay estuaries (Mississippi and Alabama) for 1848, 1957/1958 (henceforth referred to as 1957), and 2019/2022 (henceforth referred to as 2022). Upland data were obtained from multiple data sources, including the National Oceanic and Atmospheric Administration (NOAA) topographic sheets (t-sheets) and WorldView 2 satellite imagery. Regardless of the source, all upland lines were merged into a single file, to conduct a transect based change analyses. Datasets were compiled and analyzed using the R package Analyzing Moving Boundaries Using R (AMBUR) program (Jackson, 2010). This data release contains vector upland boundary lines, upland boundary points, and transects with rates of change joined to the data table.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census, the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The boundaries of most legal MCDs are as of January 1, 2015, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CCDs, delineated in 20 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jefferson County, Alabama boundary line. Data source for Map Service to Open Data on ArcGIS Online. Source map document: \gis-data\gis\library\ESRI\Services1041\OpenData\Boundary.mxd
The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. In MCD states where no MCD exists or no MCD is defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The generalized boundaries of legal MCDs are based on those as of January 1, 2022, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CCDs, delineated in 21 states, are based on those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Geospatial data about Marshall County, Alabama County Boundary. Export to CAD, GIS, PDF, CSV and access via API.
The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The generalized boundaries of most incorporated places in this file are based on those as of January 1, 2020, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CDPs based on those delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
This location is part of the Arizona Mineral Industry Location System (AzMILS), an inventory of mineral occurences, prospects and mine locations in Arizona. Mohave597A is located in T23N R12W Sec 31 NE in the Valentine Se - 7.5 Min quad. This collection consists of various reports, maps, records and related materials acquired by the Arizona Department of Mines and Mineral Resources regarding mining properties in Arizona. Information was obtained by various means, including the property owners, exploration companies, consultants, verbal interviews, field visits, newspapers and publications. Some sections may be redacted for copyright. Please see the access statement.
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
description: This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer; abstract: This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
The US Army Corps of Engineers has been regulating activities in the nation's waters since 1890. Until the 1960s the primary purpose of the regulatory program was to protect navigation. Since then, as a result of laws and court decisions, the program has been broadened so that it now considers the full public interest for both the protection and utilization of water resources. These boundaries represent USACE regulatory districts. Attribute information includes an address, telephone number and url for each district. Metadata
The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The generalized boundaries of most incorporated places in this file are based on those as of January 1, 2020, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CDPs based on those delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Multispectral imagery of the state of Alabama is available from the Geological Survey of Alabama for the time period of 1972-1984. Imagery from the Landsat multispectral scanner (MSS) is available as prints or transparencies for all bands (with selected color composites avaliable) at an approximate scale of 1:1,000,000. MSS data is collected in four spectral bands ranging from 0.5 to 1.1 micrometer with a ground resolution of about 80m.
Images available from Skylab 3 and 4 include 9 x 9 prints and
transparencies at 1:750,000 (skylab 3) and 1:500,000 (skylab 4).
These images were taken in 1973 and are along three tracks; northeast
from New Orleans, LA to South Carolina, northeast from Pensacola, FL
to Columbus, GA, and from Pearl River, Jackson MI to Pensacola, FL.
The multispectral photographic facility onboard Skylab provided
imagery in several wavelength bands ranging from 0.5 to 0.9
Micrometers. This camera system provided ground resolution of
approximately 40 m in visible wavelengths to 75 m in the infrared.
A variety of high and low altitude aircraft imagery of Alabama is also
available from the Geological Survey of Alabama. Microfiche images of
MSS/TM imagery of North America since 1986 (landsat browse imagery)
are also available. Similar imagery for other locations and time
periods is available from the Eros Data Center.
US Census Bureau Cartographic Boundary Shapefiles - States
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Department of Economic Development - Opportunity Zones Property
This dataset defines the symbology for the landcover map of the Natchez Trace Parkway. The map shows the distribution of 18 landcover classes based on the National Vegetation Classification Standard. Ground-based vegetation classification was provided by National Park Service (NPS). The mapping output and layer delineate grasses, road-developed areas, scrub-shrub, shrubland, plantation, water bodies, areas of white oak, oak, pine-oak, pine-cedar, pine-sweetgum, sweetgum (including sweetgum-oak), scattered trees, swamp forest, irregular classes, aquatic vegetation, invasive species, canopy gaps, and clouds. Mapped classes that have been digitized are noted with an asterisk (*) in the legend.
The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The cartographic boundary files include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The generalized boundaries of most incorporated places in this file are based on those as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CDPs are based on those delineated or updated as part of the the 2023 BAS or the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.