Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterElectrical resistivity results from four regional airborne electromagnetic (AEM) surveys (Burton et al. 2024, Hoogenboom et al. 2023, Minsley et al. 2021, Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey (USGS) to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. To calculate estimates of streambed properties across the MAP region, e.g. the relative connection potential between streams and the adjacent Mississippi River Valley Alluvial aquifer (MRVA), new 3D grids of electrical resistivity were generated for 2 meter (m) depth layers and only shallow depths (0-30 m). One grid was made with the horizontal dimension aligning with the 1 kilometer (km) x 1 km National Hydrogeologic Grid (NHG; Clark et al. 2018), and a second version was generated at a finer resolution of 100 m x 100 m, subdividing the NHG grid. Stream locations taken from the National Hydrograph Dataset Plus (NHDPlus) high resolution dataset were buffered with a 1.0 km radius and then intersected with both shallow 3D depth grids to isolate resistivity values immediately beneath or adjacent to streams. Twelve “facies classes” were defined to categorize materials expected to have similar hydrologic and geologic properties based on their electrical resistivity (i.e. low classes correspond to clays and silts with low permeability, and higher classes reflect larger grain sizes (sands, gravels) with expected higher permeability). The potential hydraulic connection through streambed sediments was estimated by calculating the vertically integrated electrical conductance (VIC) across each 2 m layer between 0 and 10 m depth. The shallow 3D resistivity and facies grids were exported in NetCDF format with an accompanying XML NetCDF Markdown Language metadata file. The streambed connectivity estimates were exported as raster images in Georeferenced Tagged Image File Format (GeoTIFF). Burton, B.L., Adams, R.F. Adams, Minsley, B.J., Pace, M.D.M., Kress, W.H., Rigby, J.R., and Bussell, A.M., 2024, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, March 2018 and May - August 2021: U.S. Geological Survey data release, https://doi.org/10.5066/P9KPK3UJ. Hoogenboom, B.E., Minsley, B.J., James, S.R., and Pace, M.D., 2023, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, Mississippi Embayment, and Gulf Coastal Plain, September 2021 - January 2022: U.S. Geological Survey data release, https://doi.org/10.5066/P93DO0EO. Burton, B.L., Minsley, B.J., Bloss, B.R., and Kress, W.H., 2021, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9XBBBUU. Clark, B.R., Barlow, P.M., Peterson, S.M., Hughes, J.D., Reeves, H.W., and Viger, R.J., 2018, National-scale grid to support regional groundwater availability studies and a national hydrogeologic database: U.S. Geological Survey data release, https://doi.org/10.5066/F7P84B24. Minsley, B.J., James, S.R., Bedrosian, P.A., Pace, M.D., Hoogenboom, B.E., and Burton, B.L., 2021, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020: U.S. Geological Survey data release, https://doi.org/10.5066/P9E44CTQ.
Facebook
TwitterElectrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021, and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. First, the base of the Mississippi River Valley Alluvial aquifer (MRVA) was updated using the AEM resistivity data, both borehole and manual picks, and a supervised machine learning algorithm. The 3D resistivity elevation grid was then intersected with the 2018 potentiometric surface and the new base of MRVA surface to isolate the saturated MRVA extent and generate estimates of the hydrogeologic framework and properties. The saturated aquifer thickness was calculated as the difference between the potentiometric surface elevation and the MRVA base elevation. The average electrical resistivity and facies classification of the saturated aquifer material were calculated for each 1 kilometer (km) x 1 km grid cell. See child item “Mississippi Alluvial Plain: Electrical Resistivity & Facies Classification Grids” for more details on the facies classes. Lastly, the degree of connectivity across the base of the MRVA, i.e. how likely the MRVA is hydraulically connected to deeper subcropping Tertiary units, was estimated through the vertically integrated electrical conductance (VIC) between different vertical offsets (+/- 5 meter (m), 10 m, 25 m) from the aquifer base. For example, for every 1 km x 1 km cell, the VIC for +/- 25 m is the result of integrating the electrical conductance values from all 5 m elevation layers between 25 above the MRVA base and 25 m below the MRVA base. Areas with high VIC values suggest there is low or minimal hydraulic connection across the MRVA base, while low VIC values indicate areas of high potential connection. All products were exported as raster images in Georeferenced Tagged Image File Format (GeoTIFF) files. Burton, B.L., Minsley, B.J., Bloss, B.R., and Kress, W.H., 2021, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019: U.S. Geological Survey data release, https://doi.org/10.5066/P9XBBBUU. Minsley, B.J., James, S.R., Bedrosian, P.A., Pace, M.D., Hoogenboom, B.E., and Burton, B.L., 2021, Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020: U.S. Geological Survey data release, https://doi.org/10.5066/P9E44CTQ.
Facebook
TwitterThis dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
Facebook
TwitterThe National Land Cover Database 2001 land cover layer was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. This landcover map and all documents pertaining to it are considered "provisional" until a formal accuracy assessment can be conducted. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer et al. (2004) and http://www.mrlc.gov/mrlc2k.asp.The NLCD 2001 is created by partitioning the U.S. into mapping zones. A total of 66 mapping zones were delineated within the conterminous U.S. based on ecoregion and geographical characteristics, edge matching features and the size requirement of Landsat mosaics. Mapping zone 37B encompasses whole or portions of several states, including the states of Texas, Louisiana, and Mississippi. Questions about the NLCD mapping zone 37B can be directed to the NLCD 2001 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.
Facebook
TwitterThe USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
Facebook
TwitterAerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision of competent and trained professional staff using documented standard operated procedures and are subject to rigorous quality control (QC) assurances (NBS, 1995).
Facebook
TwitterFOR non-AGOL ACCOUNT HOLDERS, DOWNLOAD THIS GEOSPATIAL DATA HERE: https://gis-fws.opendata.arcgis.com/search?tags=lmvjvThese boundaries are simplified from the U.S. Fish and Wildlife Service Real Estate Interest data layer containing polygons representing tracts of land (parcels) in which the Service has a real estate interest. Interior boundaries between parcels were dissolved to produce a single set of simplified external boundaries for each feature. These are resource grade mapping representations of the U.S. Fish and Wildlife Service boundaries. For legal descriptions of the land represented here, contact the USFWS Realty Office. This map layer was compiled by the U.S. Fish and Wildlife Service. Although these boundaries represent lands administered by the U.S. Fish and Wildlife Service, not all areas are open to the public. Some fragile habitats need to be protected from human traffic and some management areas are closed. The public is urged to contact specific Refuges or other conservation areas before visiting.
Facebook
TwitterThese data were automated to provide an accurate high-resolution historical shoreline of Mississippi River Delta, LA suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The N...
Facebook
TwitterGrala, K., & Cartwright, J. H. (2024). A Geospatial Methodology for Mapping Land Parcels with IOWDS. Mississippi State University: Geosystems Research Institute. [View Document]Technical ReportNumber of Pages: 11Publication Date: 03/2024This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.
Facebook
TwitterThis dataset provides the spatial distribution of vegetation types, soil carbon, and physiographic features in the Imnavait Creek area, Alaska. Specific attributes include vegetation, percent water, glacial geology, soil carbon, a digital elevation model (DEM), surficial geology and surficial geomorphology. Data are also provided on the research grids for georeferencing. The map data are from a variety of sources and encompass the period 1970-06-01 to 2015-08-31.
Facebook
TwitterThis dataset consists of a map depicting the landcover of the Natchez Trace Parkway. The mapping output was created using mosaiced color infrared aerial photography of the Parkway. The map shows the distribution of 18 landcover classes based on the National Vegetation Classification Standard. Ground-based vegetation classification was provided by the National Park Service (NPS). The mapping output delineates grasses, road-developed areas, scrub-shrub, shrubland, plantation, water bodies, areas of white oak, oak, pine-oak, pine-cedar, pine-sweetgum, sweetgum (including sweetgum-oak), scattered trees, swamp forest, irregular classes, aquatic vegetation, invasive species, canopy gaps, and clouds.
Total mapped area includes a 100 m buffer outside the park boundary. 235 digital orthophoto quarter quadrangles (DOQQs) were required to cover the entire 715 km long Parkway. For ease of use, the DOQQs were grouped into 11 mosaics, each covering a section of the Parkway. At the request of the NPS, each mosaic was divided into ten tiles to allow for efficient loading on less robust computers.
Facebook
TwitterIn collaboration with the Mississippi Department of Wildlife, Fisheries, and Parks Natural Heritage Program, the U.S. Fish and Wildlife Service (Service) developed the Mississippi Solar Siting Tool to provide stakeholders the general guidance necessary to reduce potential adverse impacts to sensitive habitats and species in Mississippi when siting proposed solar energy projects. The purpose of the map is to assist solar energy developers in screening environmentally sensitive areas compared to areas where lower environmental impacts are anticipated. The decision framework is similar to that described in the Service’s 2012 Land-Based Wind Energy Guidelines (Land-Based Wind Energy Guidelines), particularly during Tiers 1 (Preliminary Site Evaluation) and 2 (Site Characterization); whereas Tiers 3-5 involve field studies to predict and monitor impacts. Environmental risks include direct impacts (e.g., from construction or clearing, loss, fragmentation, or degradation of habitat, displacement or behavioral changes), and indirect impacts (e.g., increased predator populations). The assigned risk categories and corresponding colors in the map represent the Service’s estimation of the relative environmental risk to species of concern and sensitive habitats within an area. Regardless of the environmental risk associated with a particular area, solar developers should coordinate with the Service and other appropriate Federal and State agencies and follow guidelines to inform the siting and development of any proposed solar energy project.
Facebook
Twitter(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Cretaceous Travis Peak and Hosston Formations was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration of the top of the Travis Peak or Hosston Formations in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the Kelly bushing elevation or the ground surface elevation) and the reported depth of the Travis Peak or Hosston. This map service also shows the thickness of the interval from the top of the Travis Peak or Hosston Formations to the top of the Cotton Valley Group.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, is composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats. The Watershed Boundary Dataset is being developed under the leadership of the Subcommittee on Spatial Water Data, which is part of the Advisory Committee on Water Information (ACWI) and the Federal Geographic Data Committee (FGDC). The USDA Natural Resources Conservation Service (NRCS), along with many other federal agencies and national associations, have representatives on the Subcommittee on Spatial Water Data. As watershed boundary geographic information systems (GIS) coverages are completed, statewide and national data layers will be made available via the Geospatial Data Gateway to everyone, including federal, state, local government agencies, researchers, private companies, utilities, environmental groups, and concerned citizens. The database will assist in planning and describing water use and related land use activities. Resources in this dataset:Resource Title: Watershed Boundary Dataset (WBD). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/dataset/?cid=nrcs143_021630 Web site for the Watershed Boundary Dataset (WBD), including links to:
Review Data Availability (Status Maps)
Obtain Data by State, County, or Other Area
Obtain Seamless National Data offsite link image
Geospatial Data Tools
National Technical and State Coordinators
Information about WBD dataset
Facebook
Twitter(See USGS Digital Data Series DDS-69-E) A geographic information system focusing on the Jurassic-Cretaceous Cotton Valley Group was developed for the U.S. Geological Survey's (USGS) 2002 assessment of undiscovered, technically recoverable oil and natural gas resources of the Gulf Coast Region. The USGS Energy Resources Science Center has developed map and metadata services to deliver the 2002 assessment results GIS data and services online. The Gulf Coast assessment is based on geologic elements of a total petroleum system (TPS) as described in Dyman and Condon (2005). The estimates of undiscovered oil and gas resources are within assessment units (AUs). The hydrocarbon assessment units include the assessment results as attributes within the AU polygon feature class (in geodatabase and shapefile format). Quarter-mile cells of the land surface that include single or multiple wells were created by the USGS to illustrate the degree of exploration and the type and distribution of production for each assessment unit. Other data that are available in the map documents and services include the TPS and USGS province boundaries. To easily distribute the Gulf Coast maps and GIS data, a web mapping application has been developed by the USGS, and customized ArcMap (by ESRI) projects are available for download at the Energy Resources Science Center Gulf Coast website. ArcGIS Publisher (by ESRI) was used to create a published map file (pmf) from each ArcMap document (.mxd). The basemap services being used in the GC map applications are from ArcGIS Online Services (by ESRI), and include the following layers: -- Satellite imagery -- Shaded relief -- Transportation -- States -- Counties -- Cities -- National Forests With the ESRI_StreetMap_World_2D service, detailed data, such as railroads and airports, appear as the user zooms in at larger scales. This map service shows the structural configuration on the top of the Cotton Valley Group in feet below sea level. The map was produced by calculating the difference between a datum at the land surface (either the kelly bushing elevation or the ground surface elevation) and the reported depth of the Cotton Valley Group. This map service also shows the thickness of the interval from the top of the Cotton Valley Group to the top of the Smackover Formation.
Facebook
TwitterThis dataset provides maps of tidal marsh green vegetation, non-vegetation, and open water for six estuarine regions of the conterminous United States: Cape Cod, MA; Chesapeake Bay, MD, Everglades, FL; Mississippi Delta, LA; San Francisco Bay, CA; and Puget Sound, WA. Maps were derived from current National Agriculture Imagery Program data (2013-2015) using object-based classification for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program (C-CAP) map. These 1m resolution maps were used to calculate the fraction of green vegetation within 30m Landsat pixels for the same tidal marsh regions and these data are provided in a related dataset.
Facebook
TwitterGIS polygon dataset for Mississippi of the USGS Public Land Survey System (PLSS). Data digitized from USGS 7.5 minute topo maps (paper) dated between 1960 and 1989. Data contains survey district, section, township, range number attributes , and annotation. *** Data was merged to form the statewide file in 2005 and corrected using new USGS DRGS dated through 2004. +++ Further corrections were made by MS Department of Transportation staff 2007/2008. Note: Attribute miscodings were found by Pete Kohn of the MS Development Authority and James Smith of the USDA/FSA - MS Office. Those corrections were made and incorporated into this version of the data set. Corrections to sections along the MS River in Washington and Issaquena Counties were made by MARIS staff in April 2010. These miscodes were found by Michael-Baker Engineering and Waggoner Engineering.
Facebook
TwitterThe U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created a high-resolution land cover/use data set for Mississippi River Navigation Pool 8 from 1:10,000-scale color infrared aerial photos collected August 26th, 2004. The photos were interpreted using a 1-acre 10% minimum vegetation cover to delineate land cover/land use, percent vegetation cover, tree height, and hydrology regime. The geographic extent of Navigation Pool 8 is the section of the river upstream of Lock and Dam 8 (river mile 679.2) located near Genoa, WI, to Lock and Dam 7 (river mile 702.5) located near Dresbach, MN.
Facebook
TwitterAs part of BOREAS, the RSS-15 team conducted an investigation using SIR-C , X-SAR and Landsat TM data for estimating total above-ground dry biomass for the SSA and NSA modeling grids and component biomass for the SSA. Relationships of backscatter to total biomass and total biomass to foliage, branch, and bole biomass were used to estimate biomass density across the landscape. The procedure involved image classification with SAR and Landsat TM data and development of simple mapping techniques using combinations of SAR channels. For the SSA, the SIR-C data used were acquired on 06-Oct-1994, and the Landsat TM data used were acquired on September 2, 1995. The maps of the NSA were developed from SIR-C data acquired on 13-Apr-1994.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).