Facebook
TwitterPoland's average transaction prices for a dwelling are shown as 100 percent. The average prices in nearly all the main cities in Poland were higher than the country's average. The highest prices for a dwelling were seen in Warsaw, with an average price **** percent higher than the country's average in 2024.
Facebook
TwitterOur Price Paid Data includes information on all property sales in England and Wales that are sold for value and are lodged with us for registration.
Get up to date with the permitted use of our Price Paid Data:
check what to consider when using or publishing our Price Paid Data
If you use or publish our Price Paid Data, you must add the following attribution statement:
Contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the Open Government Licence v3.0.
Price Paid Data is released under the http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/">Open Government Licence (OGL). You need to make sure you understand the terms of the OGL before using the data.
Under the OGL, HM Land Registry permits you to use the Price Paid Data for commercial or non-commercial purposes. However, OGL does not cover the use of third party rights, which we are not authorised to license.
Price Paid Data contains address data processed against Ordnance Survey’s AddressBase Premium product, which incorporates Royal Mail’s PAF® database (Address Data). Royal Mail and Ordnance Survey permit your use of Address Data in the Price Paid Data:
If you want to use the Address Data in any other way, you must contact Royal Mail. Email address.management@royalmail.com.
The following fields comprise the address data included in Price Paid Data:
The October 2025 release includes:
As we will be adding to the October data in future releases, we would not recommend using it in isolation as an indication of market or HM Land Registry activity. When the full dataset is viewed alongside the data we’ve previously published, it adds to the overall picture of market activity.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
Google Chrome (Chrome 88 onwards) is blocking downloads of our Price Paid Data. Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
We update the data on the 20th working day of each month. You can download the:
These include standard and additional price paid data transactions received at HM Land Registry from 1 January 1995 to the most current monthly data.
Your use of Price Paid Data is governed by conditions and by downloading the data you are agreeing to those conditions.
The data is updated monthly and the average size of this file is 3.7 GB, you can download:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterOf all the capital cities in Europe, prices in Paris had the highest disproportion to the national average in 2024. A new house in the French capital cost more than ***** times the price of a house outside the city. This was followed by Athens, Munich, and Barcelona.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.
The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.
Key Features:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for RESIDENTIAL PROPERTY PRICES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Property Price: YTD Avg: Overall data was reported at 9,510.153 RMB/sq m in Mar 2025. This records a decrease from the previous number of 9,547.228 RMB/sq m for Feb 2025. China Property Price: YTD Avg: Overall data is updated monthly, averaging 5,157.474 RMB/sq m from Dec 1995 (Median) to Mar 2025, with 352 observations. The data reached an all-time high of 11,029.538 RMB/sq m in Feb 2021 and a record low of 599.276 RMB/sq m in Feb 1996. China Property Price: YTD Avg: Overall data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s Price – Table CN.PD: NBS: Property Price: Monthly.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The property listings dataset contains information about real estate properties available for sale or rent in Brazil. It includes details such as property type (apartment, house, commercial property), location (city, neighborhood), size (square footage, number of rooms), price, amenities, and contact information for the property owner or real estate agent. This dataset can be used for market analysis, property valuation, and identifying trends in the real estate market.
Sales and Rental Prices Dataset: The sales and rental prices dataset provides information about the prices of real estate properties in Brazil. It includes data on property transactions, including sale prices and rental prices per square meter or per month. This dataset can be used to analyze price trends, compare property prices across different regions, and identify areas with high or low real estate market demand.
Property Characteristics Dataset: The property characteristics dataset contains detailed information about the features and attributes of real estate properties. It includes data such as the number of bedrooms, bathrooms, parking spaces, floor plan, construction year, building amenities, and property condition. This dataset can be used for property classification, identifying popular property features, and evaluating property quality.
Geographical Data: Geographical data includes information about the location and spatial features of real estate properties in Brazil. It can include data such as latitude and longitude coordinates, zoning information, proximity to amenities (schools, hospitals, parks), and neighborhood demographics. This dataset can be used for spatial analysis, identifying hotspots or desirable locations, and understanding the neighborhood characteristics.
Property Market Trends Dataset: The property market trends dataset provides information about market conditions and trends in the real estate sector in Brazil. It includes data such as the number of property listings, average time on the market, price fluctuations, mortgage interest rates, and economic indicators that impact the real estate market. This dataset can be used for market forecasting, understanding market dynamics, and making informed investment decisions.
Real Estate Regulatory Data: Real estate regulatory data includes information about legal and regulatory aspects of the real estate sector in Brazil. It can include data on property ownership, property taxes, zoning regulations, building permits, and legal restrictions on property transactions. This dataset can be used for legal compliance, understanding property ownership rights, and assessing the legal framework for real estate transactions.
Historical Data: Historical real estate data includes past records and trends of property prices, market conditions, and sales volumes in Brazil. This dataset can span several years and can be used to analyze long-term market trends, compare current market conditions with historical data, and assess the performance of the real estate market over time.
Facebook
Twitter1 Customer Insights: - Customer Segmentation: Group customers based on demographics, purpose, or deal satisfaction to understand different customer profiles. - Satisfaction Analysis: Investigate what factors (e.g., property price, area, or mortgage involvement) influence customer satisfaction levels. - Source Effectiveness: Analyze which acquisition sources (e.g., website or agency) yield the highest deal satisfaction.
2 Property Market Analysis: - Price Trends: Analyze how property prices vary over time or by location to identify market trends. - Demand Analysis: Determine which types of properties (e.g., apartments vs. houses) are most popular based on sales data. - Area vs. Price: Explore the relationship between property area and price to develop pricing models or evaluate property value.
3 Predictive Modeling: - Price Prediction: Build models to predict property prices based on features like area, type, and location. - Satisfaction Prediction: Create models to predict customer satisfaction using transaction details and demographics. - Likelihood of Sale: Develop a model to predict the likelihood of a property being sold based on its attributes and market conditions.
4 Geographical Analysis: - Heatmaps: Create heatmaps to visualize property sales and identify high-demand areas. - Country and State Trends: Examine how real estate trends differ between countries and states.
5 Mortgage Impact Study: - Mortgage vs. Non-Mortgage Analysis: Compare transactions that involved a mortgage to those that didn’t to study the impact on price, satisfaction, and deal closure speed.
6 Time Series Analysis: - Sales Over Time: Analyze property sales over different periods to identify seasonal trends or patterns. - Customer Birth Date Analysis: Study any correlations between customers’ birth years and their purchasing behavior.
Facebook
TwitterIn this Economic Commentary , we compare characteristics of the 2000–2006 house-price boom that preceded the Great Recession to the house-price boom that began in 2020 during the COVID-19 pandemic. These two episodes of high house-price growth have important differences, including the behavior of rental rates, the dynamics of housing supply and demand, and the state of the mortgage market. The absence of changes in fundamentals during the 2000s is consistent with the literature emphasizing house-price beliefs during this prior episode. In contrast to during the 2000s boom, changes in fundamentals (including rent and demand growth) played a more dominant role in the 2020s house-price boom.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
PLEASE UPVOTE IF YOU LIKE THIS CONTENT! 😍
Same dataset as "House Sales in King County, USA", but with treated content and with a split version (train-test) allowing direct use in machine learning models.
We have 14 columns in the dataset, as it follows:
Facebook
TwitterPurpose and brief description The house price index measures the inflation in the residential property market. The house price index reflects price developments for all residential properties purchased by households (apartments, terraced houses, detached houses), regardless of whether they are new or existing. Only market prices are taken into account, so self-build homes are excluded. The price of the land is included in the price of the properties. Population Real estate transactions involving residential properties Periodicity Quarterly. Release calendar Results available 3 months after the reference period Definitions House price index: The house price index measures changes in the prices of new or existing dwellings, regardless of their use or previous owner. Inflation - house price index: Inflation is defined as the ratio between the value of a given quarter and that of the same quarter of the previous year. Weighting - house price index: Weighting based on the national accounts (gross fixed capital formation in housing) and the total number of real estate transactions involving residential properties. Type of dwelling according to the classification set out in Regulation (EU) No 93/2013 on housing price indices. Technical information The house price index measures the price evolution of real estate prices on the market of private property. The index follows price changes of new or existing residential real estate purchased by households, irrespective of their purpose (letting or owner-occupying). Only market prices are taken into account. Houses built by their owners are therefore not included. The price of the building plot is included in the house price. The house price index is based on real estate transaction data from the General Administration of the Patrimonial Documentation of the FPS Finances. The prices used are those included in the deeds of sale. Given the time between the date on which the preliminary sales agreement is signed and the date on which the deed is executed (between three and four months), this index measures the price evolution with a delay compared to the actual date on which the sales price is set. This delay is inherent to the data source. The house price index is calculated by the European Union Member States, Norway and Iceland. Eurostat calculates the index for the Euro area (as well as for the European Union as a whole) using the harmonised indices of the Member States. Given the role of the housing market in the economic and financial crisis of 2008, the house price index was included in the indicators used in the procedure to prevent and correct macroeconomic imbalances in the European Union. The house price index is calculated under the European Regulation 2016/792 on harmonised indices of consumer prices and the house price index and 2023/1470 laying down the methodological and technical specifications as regards the house price index and the owner-occupied housing price index. Data are available from 2005 onward for Belgium as well as for the European Union and the majority of European countries. The house price index can be broken down by new houses and existing houses. The weights of these two items in the overall index are determined by the gross fixed capital formation in houses (for the new houses) and the total value of transactions of the previous year (for the existing houses). Until 2013, the house price index of new houses was roughly estimated based on the output price index in the construction sector. Since 2014, it is also based on real estate transaction data. House price index for existing houses is available per region since 2010. The data have therefore been completely reviewed when the results for the fourth quarter of 2023 were published in March 2024. Since the houses that are put up for sale differ from one quarter to another, the changes in characteristics are processed with hedonic regression models to eliminate price fluctuations due to changes in characteristics of the properties sold. These models aim to estimate the theoretical price based on the characteristics and location of the houses sold. The index is then calculated based on changes in the average prices observed and adjusted by a factor depending on the differences in quality observed between dwellings sold during the different periods.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
The UK house price index (UK HPI) represents changes in the value of UK residential properties (i.e., detached houses, semi-detached houses, terraced houses, flats and maisonettes) and indicates trends in the UK housing market. The UK HPI applies a hedonic regression model that utilises the various sources of data on property price (e.g., HM Land Registry's Price Paid dataset) to allow for a true comparison of UK property prices in each period. The data is sourced from the Office for National Statistics (ONS) and HM Land Registry, using house sales data from HM Land Registry, Registers of Scotland, and Land and Property Services Northern Ireland. Forecast data is estimated by IBISWorld, with reference to Office for Budget Responsibility (OBR) forecasts submitted in its 'Economic and fiscal outlook – March 2022' publication. The figures are presented with a base month in 2015 (i.e., January 2015 = 100) and are averages of the UK HPI over each financial year (i.e., April-March).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HPM06 - Residential Property Price Index - Dataset - data.gov.ie
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
India's residential house prices - quarterly and annual changes in house prices across cities, expert analysis and comparison with global peers.
Facebook
TwitterPortugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains data on all Real Property parcels that have sold since 2013 in Allegheny County, PA.
Before doing any market analysis on property sales, check the sales validation codes. Many property "sales" are not considered a valid representation of the true market value of the property. For example, when multiple lots are together on one deed with one price they are generally coded as invalid ("H") because the sale price for each parcel ID number indicates the total price paid for a group of parcels, not just for one parcel. See the Sales Validation Codes Dictionary for a complete explanation of valid and invalid sale codes.
Sales Transactions Disclaimer: Sales information is provided from the Allegheny County Department of Administrative Services, Real Estate Division. Content and validation codes are subject to change. Please review the Data Dictionary for details on included fields before each use. Property owners are not required by law to record a deed at the time of sale. Consequently the assessment system may not contain a complete sales history for every property and every sale. You may do a deed search at http://www.alleghenycounty.us/re/index.aspx directly for the most updated information. Note: Ordinance 3478-07 prohibits public access to search assessment records by owner name. It was signed by the Chief Executive in 2007.
Facebook
TwitterPoland's average transaction prices for a dwelling are shown as 100 percent. The average prices in nearly all the main cities in Poland were higher than the country's average. The highest prices for a dwelling were seen in Warsaw, with an average price **** percent higher than the country's average in 2024.