100+ datasets found
  1. Annual change in house prices in the UK 2015-2025, by month

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Annual change in house prices in the UK 2015-2025, by month [Dataset]. https://www.statista.com/statistics/751619/house-price-change-uk/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Apr 2025
    Area covered
    United Kingdom
    Description

    House prices in the UK rose dramatically during the coronavirus pandemic, with growth slowing down in 2022 and turning negative in 2023. The year-on-year annual house price change peaked at 14 percent in July 2022. In April 2025, house prices increased by 3.5 percent. As of late 2024, the average house price was close to 290,000 British pounds. Correction in housing prices: a European phenomenon The trend of a growing residential real estate market was not exclusive to the UK during the pandemic. Likewise, many European countries experienced falling prices in 2023. When comparing residential property RHPI (price index in real terms, e.g. corrected for inflation), countries such as Germany, France, Italy, and Spain also saw prices decline. Sweden, one of the countries with the fastest growing residential markets, saw one of the largest declines in prices. How has demand for UK housing changed since the outbreak of the coronavirus? The easing of the lockdown was followed by a dramatic increase in home sales. In November 2020, the number of mortgage approvals reached an all-time high of over 107,000. One of the reasons for the housing boom were the low mortgage rates, allowing home buyers to take out a loan with an interest rate as low as 2.5 percent. That changed as the Bank of England started to raise the base lending rate, resulting in higher borrowing costs and a decline in homebuyer sentiment.

  2. T

    Ireland Residential Property Prices YoY

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Ireland Residential Property Prices YoY [Dataset]. https://tradingeconomics.com/ireland/house-price-index-yoy
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Oct 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2006 - Sep 30, 2025
    Area covered
    Ireland
    Description

    House Price Index YoY in Ireland increased to 7.60 percent in September from 7.50 percent in August of 2025. This dataset includes a chart with historical data for Ireland Residential Property Prices YoY.

  3. U

    United States House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-states/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    United States
    Description

    Key information about House Prices Growth

    • US house prices grew 3.3% YoY in Sep 2025, following an increase of 4.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 1992 to Sep 2025, with an average growth rate of -12.4%.
    • House price data reached an all-time high of 17.7% in Sep 2021 and a record low of -12.4% in Dec 2008.

    CEIC calculates House Prices Growth from quarterly House Price Index. Federal Housing Finance Agency provides House Price Index with base January 1991=100.

  4. Five-year forecast of house price growth in the UK 2025-2029, by region

    • statista.com
    Updated Jul 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Five-year forecast of house price growth in the UK 2025-2029, by region [Dataset]. https://www.statista.com/statistics/975951/united-kingdom-five-year-forecast-house-price-growth-by-region/
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2024
    Area covered
    United Kingdom
    Description

    According to the forecast, the North West and Yorkshire & the Humber are the UK regions expected to see the highest overall growth in house prices over the five-year period between 2025 and 2029. Just behind are the North East and West Midlands. In London, house prices are expected to rise by **** percent.

  5. F

    Real Residential Property Prices for United States

    • fred.stlouisfed.org
    json
    Updated Oct 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Real Residential Property Prices for United States [Dataset]. https://fred.stlouisfed.org/series/QUSR628BIS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Real Residential Property Prices for United States (QUSR628BIS) from Q1 1970 to Q2 2025 about residential, HPI, housing, real, price index, indexes, price, and USA.

  6. T

    Euro Area Residential Property Prices

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Euro Area Residential Property Prices [Dataset]. https://tradingeconomics.com/euro-area/residential-property-prices
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1976 - Mar 31, 2025
    Area covered
    Euro Area
    Description

    Residential Property Prices In the Euro Area increased 5.37 percent in March of 2025 over the same month in the previous year. This dataset includes a chart with historical data for Euro Area Residential Property Prices.

  7. Average house price in the UK 2010-2025, by month

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average house price in the UK 2010-2025, by month [Dataset]. https://www.statista.com/statistics/751605/average-house-price-in-the-uk/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2010 - Jun 2025
    Area covered
    United Kingdom
    Description

    In 2022, house price growth in the UK slowed, after a period of decade-long increase. Nevertheless, in June 2025, prices reached a new peak, with the average home costing ******* British pounds. This figure refers to all property types, including detached, semi-detached, terraced houses, and flats and maisonettes. Compared to other European countries, the UK had some of the highest house prices. How have UK house prices increased over the last 10 years? Property prices have risen dramatically over the past decade. According to the UK house price index, the average house price has grown by over ** percent since 2015. This price development has led to the gap between the cost of buying and renting a property to close. In 2023, buying a three-bedroom house in the UK was no longer more affordable than renting one. Consequently, Brits have become more likely to rent longer and push off making a house purchase until they have saved up enough for a down payment and achieved the financial stability required to make the step. What caused the recent fluctuations in house prices? House prices are affected by multiple factors, such as mortgage rates, supply, and demand on the market. For nearly a decade, the UK experienced uninterrupted house price growth as a result of strong demand and a chronic undersupply. Homebuyers who purchased a property at the peak of the housing boom in July 2022 paid ** percent more compared to what they would have paid a year before. Additionally, 2022 saw the most dramatic increase in mortgage rates in recent history. Between December 2021 and December 2022, the **-year fixed mortgage rate doubled, adding further strain to prospective homebuyers. As a result, the market cooled, leading to a correction in pricing.

  8. House Price Prediction Dataset

    • kaggle.com
    zip
    Updated Sep 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zafar (2024). House Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/zafarali27/house-price-prediction-dataset
    Explore at:
    zip(29372 bytes)Available download formats
    Dataset updated
    Sep 21, 2024
    Authors
    Zafar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    House Price Prediction Dataset.

    The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.

    1. Dataset Features

    The dataset is designed to capture essential attributes for predicting house prices, including:

    Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.

    2. Feature Distributions

    Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.

    3. Correlation Between Features

    A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.

    4. Potential Use Cases

    The dataset is well-suited for various machine learning and data analysis applications, including:

    House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.

    5. Limitations and ...

  9. F

    Average Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/ASPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.

  10. T

    United States Residential Property Prices

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Residential Property Prices [Dataset]. https://tradingeconomics.com/united-states/residential-property-prices
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1971 - Jun 30, 2025
    Area covered
    United States
    Description

    Residential Property Prices in the United States increased 1.66 percent in June of 2025 over the same month in the previous year. This dataset includes a chart with historical data for the United States Residential Property Prices.

  11. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.

  12. e

    Data from: House price index

    • data.europa.eu
    excel xlsx
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Gate II & III - INS (STATBEL - Statistics Belgium), House price index [Dataset]. https://data.europa.eu/data/datasets/3c3a5306c7f84ac90f6ec053c72744f6e5aa17fa?locale=en
    Explore at:
    excel xlsxAvailable download formats
    Dataset authored and provided by
    North Gate II & III - INS (STATBEL - Statistics Belgium)
    Description

    Purpose and brief description The house price index measures the inflation in the residential property market. The house price index reflects price developments for all residential properties purchased by households (apartments, terraced houses, detached houses), regardless of whether they are new or existing. Only market prices are taken into account, so self-build homes are excluded. The price of the land is included in the price of the properties. Population Real estate transactions involving residential properties Periodicity Quarterly. Release calendar Results available 3 months after the reference period Definitions House price index: The house price index measures changes in the prices of new or existing dwellings, regardless of their use or previous owner. Inflation - house price index: Inflation is defined as the ratio between the value of a given quarter and that of the same quarter of the previous year. Weighting - house price index: Weighting based on the national accounts (gross fixed capital formation in housing) and the total number of real estate transactions involving residential properties. Type of dwelling according to the classification set out in Regulation (EU) No 93/2013 on housing price indices. Technical information The house price index measures the price evolution of real estate prices on the market of private property. The index follows price changes of new or existing residential real estate purchased by households, irrespective of their purpose (letting or owner-occupying). Only market prices are taken into account. Houses built by their owners are therefore not included. The price of the building plot is included in the house price. The house price index is based on real estate transaction data from the General Administration of the Patrimonial Documentation of the FPS Finances. The prices used are those included in the deeds of sale. Given the time between the date on which the preliminary sales agreement is signed and the date on which the deed is executed (between three and four months), this index measures the price evolution with a delay compared to the actual date on which the sales price is set. This delay is inherent to the data source. The house price index is calculated by the European Union Member States, Norway and Iceland. Eurostat calculates the index for the Euro area (as well as for the European Union as a whole) using the harmonised indices of the Member States. Given the role of the housing market in the economic and financial crisis of 2008, the house price index was included in the indicators used in the procedure to prevent and correct macroeconomic imbalances in the European Union. The house price index is calculated under the European Regulation 2016/792 on harmonised indices of consumer prices and the house price index and 2023/1470 laying down the methodological and technical specifications as regards the house price index and the owner-occupied housing price index. Data are available from 2005 onward for Belgium as well as for the European Union and the majority of European countries. The house price index can be broken down by new houses and existing houses. The weights of these two items in the overall index are determined by the gross fixed capital formation in houses (for the new houses) and the total value of transactions of the previous year (for the existing houses). Until 2013, the house price index of new houses was roughly estimated based on the output price index in the construction sector. Since 2014, it is also based on real estate transaction data. House price index for existing houses is available per region since 2010. The data have therefore been completely reviewed when the results for the fourth quarter of 2023 were published in March 2024. Since the houses that are put up for sale differ from one quarter to another, the changes in characteristics are processed with hedonic regression models to eliminate price fluctuations due to changes in characteristics of the properties sold. These models aim to estimate the theoretical price based on the characteristics and location of the houses sold. The index is then calculated based on changes in the average prices observed and adjusted by a factor depending on the differences in quality observed between dwellings sold during the different periods.

  13. 🏡 Global Housing Market Analysis (2015-2024)

    • kaggle.com
    zip
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atharva Soundankar (2025). 🏡 Global Housing Market Analysis (2015-2024) [Dataset]. https://www.kaggle.com/datasets/atharvasoundankar/global-housing-market-analysis-2015-2024
    Explore at:
    zip(18363 bytes)Available download formats
    Dataset updated
    Mar 18, 2025
    Authors
    Atharva Soundankar
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset provides insights into the global housing market, covering various economic factors from 2015 to 2024. It includes details about property prices, rental yields, interest rates, and household income across multiple countries. This dataset is ideal for real estate analysis, financial forecasting, and market trend visualization.

    📑 Column Descriptions

    Column NameDescription
    CountryThe country where the housing market data is recorded 🌍
    YearThe year of observation 📅
    Average House Price ($)The average price of houses in USD 💰
    Median Rental Price ($)The median monthly rent for properties in USD 🏠
    Mortgage Interest Rate (%)The average mortgage interest rate percentage 📉
    Household Income ($)The average annual household income in USD 🏡
    Population Growth (%)The percentage increase in population over the year 👥
    Urbanization Rate (%)Percentage of the population living in urban areas 🏙️
    Homeownership Rate (%)The percentage of people who own their homes 🔑
    GDP Growth Rate (%)The annual GDP growth percentage 📈
    Unemployment Rate (%)The percentage of unemployed individuals in the labor force 💼
  14. USA House Prices

    • kaggle.com
    zip
    Updated Jul 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fırat Özcan (2024). USA House Prices [Dataset]. https://www.kaggle.com/datasets/fratzcan/usa-house-prices/code
    Explore at:
    zip(121422 bytes)Available download formats
    Dataset updated
    Jul 21, 2024
    Authors
    Fırat Özcan
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    United States
    Description

    Real estate markets are of great importance for both local and international investors. Sydney and Melbourne are two dynamic markets where economic and social factors have significant impacts on property prices. Below is a detailed description of each feature:

    1. Date: The date when the property was sold. This feature helps in understanding the temporal trends in property prices.
    2. Price:The sale price of the property in USD. This is the target variable we aim to predict.
    3. Bedrooms:The number of bedrooms in the property. Generally, properties with more bedrooms tend to have higher prices.
    4. Bathrooms: The number of bathrooms in the property. Similar to bedrooms, more bathrooms can increase a property’s value.
    5. Sqft Living: The size of the living area in square feet. Larger living areas are typically associated with higher property values.
    6. Sqft Lot:The size of the lot in square feet. Larger lots may increase a property’s desirability and value.
    7. Floors: The number of floors in the property. Properties with multiple floors may offer more living space and appeal.
    8. Waterfront: A binary indicator (1 if the property has a waterfront view, 0 other- wise). Properties with waterfront views are often valued higher.
    9. View: An index from 0 to 4 indicating the quality of the property’s view. Better views are likely to enhance a property’s value.
    10. Condition: An index from 1 to 5 rating the condition of the property. Properties in better condition are typically worth more.
    11. Sqft Above: The square footage of the property above the basement. This can help isolate the value contribution of above-ground space.
    12. Sqft Basement: The square footage of the basement. Basements may add value depending on their usability.
    13. Yr Built: The year the property was built. Older properties may have historical value, while newer ones may offer modern amenities.
    14. Yr Renovated: The year the property was last renovated. Recent renovations can increase a property’s appeal and value.
    15. Street: The street address of the property. This feature can be used to analyze location-specific price trends.
    16. City: The city where the property is located. Different cities have distinct market dynamics.
    17. Statezip: The state and zip code of the property. This feature provides regional context for the property.
    18. Country: The country where the property is located. While this dataset focuses on properties in Australia, this feature is included for completeness.

    If you like this dataset, please contribute by upvoting

  15. T

    Ireland Residential Property Prices

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Ireland Residential Property Prices [Dataset]. https://tradingeconomics.com/ireland/housing-index
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2005 - Sep 30, 2025
    Area covered
    Ireland
    Description

    Housing Index in Ireland increased to 201.20 points in September from 199.50 points in August of 2025. This dataset provides the latest reported value for - Ireland Residential Property Prices - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  16. I

    Indonesia House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Indonesia House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/indonesia/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2022 - Sep 1, 2025
    Area covered
    Indonesia
    Description

    Key information about House Prices Growth

    • Indonesia house prices grew 0.8% YoY in Sep 2025, following an increase of 0.9% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 2003 to Sep 2025, with an average growth rate of 7.4%.
    • House price data reached an all-time high of 13.5% in Sep 2013 and a record low of 0.8% in Sep 2025.

    CEIC calculates House Prices Growth from quarterly Residential Property Price Index. Bank Indonesia provides Residential Property Price Index with base 2018=100. House Prices Growth covers 18 major cities. House Prices Growth prior to Q1 2019 is calculated from House Price Index with base 2002=100. House Prices Growth prior to Q1 2013 covers 14 major cities.

  17. U

    United Kingdom House Prices Growth

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United Kingdom House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/united-kingdom/house-prices-growth
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2024 - Nov 1, 2025
    Area covered
    United Kingdom
    Description

    Key information about House Prices Growth

    • UK house prices grew 1.8% YoY in Nov 2025, following an increase of 2.5% YoY in the previous month.
    • YoY growth data is updated monthly, available from Jan 1992 to Nov 2025, with an average growth rate of -15.9%.
    • House price data reached an all-time high of 26.4% in Jan 2003 and a record low of -17.5% in Feb 2009.

    CEIC calculates House Prices Growth from monthly House Price Index. Nationwide provides House Price Index with base Q1 1993=100.

  18. I

    India House Prices Growth

    • ceicdata.com
    Updated Apr 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). India House Prices Growth [Dataset]. https://www.ceicdata.com/en/indicator/india/house-prices-growth
    Explore at:
    Dataset updated
    Apr 19, 2019
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 2022 - Jun 1, 2025
    Area covered
    India
    Description

    Key information about House Prices Growth

    • India house prices grew 2.5% YoY in Jun 2025, following an increase of 5.1% YoY in the previous quarter.
    • YoY growth data is updated quarterly, available from Mar 2011 to Jun 2025, with an average growth rate of 5.1%.
    • House price data reached an all-time high of 30.6% in Mar 2011 and a record low of -11.4% in Sep 2020.

    CEIC calculates House Prices Growth from quarterly House Price Index. National Housing Bank provides House Price Index with base 2017-2018=100. House Prices Growth covers Mumbai only. House Prices Growth prior to Q2 2014 is calculated from House Price Index with base 2007=100.

  19. Forecast house price growth in the UK 2025-2029

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast house price growth in the UK 2025-2029 [Dataset]. https://www.statista.com/statistics/376079/uk-house-prices-forecast/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    After a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.

  20. Art Presence & Property Prices in London

    • kaggle.com
    zip
    Updated Feb 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Art Presence & Property Prices in London [Dataset]. https://www.kaggle.com/datasets/thedevastator/art-presence-property-prices-in-london
    Explore at:
    zip(1598 bytes)Available download formats
    Dataset updated
    Feb 13, 2023
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    London
    Description

    Art Presence & Property Prices in London

    Quantifying the Relationship with Online Data

    By [source]

    About this dataset

    This dataset explores the potential relationship between art presence and property prices in London neighborhoods. We conducted an analysis to investigate this by measuring the proportion of Flickr photographs with the keyword ‘art’ attached. We then compared that data to residential property price gains for each Inner London neighborhood, seeking out any associations or correlations between art presence and housing value. Our findings demonstrate the impact of aesthetics on neighborhoods, illustrating how visual environment influences socio-economic conditions. With this dataset, we aim to show how online platforms can be leveraged for quantitative data collection and analysis which can visualize these relationships so as to better understand our urban settings

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset can be used to investigate the relationship between art presence and property prices in London neighborhoods. The dataset includes three columns – Postcode.District, Rank.Mean.Change, and Proportion.Art.Photos – which provide quantitative analyses of the association between art presence and price gains for London neighborhoods.

    To use this dataset, first identify the postcode district for which you wish to access data by referencing a street list or PostCodeSearcher website that outlines postcodes for each neighborhood in London(http://postcodesearcher.com/london). This will allow you to easily find properties within each neighborhood as there are specific postcode districts that demarcate boundaries of particular areas (for example W2 covers Bayswater).

    Once you have identified a postcode district of interest, review the ‘Rank.Mean Change’ column to explore how residential property prices have changed relative to other areas in Inner London since 2010-13 using fractions (1 = highest gain; 25 = lowest gain). Focusing on one particular location will also provide an idea about their current pricing level compared with others in order to evaluate whether further investment is worthwhile or not based on its past history of growth rates . It is important to note that higher rank numbers indicate higher price gains while lower rank numbers indicate lower price gains relative with respect from 2010-13 timeframe therefore comparing these values across many neighborhoods gives an indication as what area offers more value growth wise over given time period..

    Finally pay attention how much did art contributes as far change in property price goes? To answer this question , review ‘Proportion Art Photos’ column which provides ratio of Flickr photographs associated with keyword 'art' attached within given regions helps identify visual characteristics within different localities.. Comparing proportions across various locations provide detail information regarding how much did share visual aesthetic characterstics impacts change in pricings accross different region.. For example it can give us further understandings if majority photographs are made up of urban landscape , abstracts or simply portrait presences had any role play when we look at relativity gains over past few years? Such comparisons help inform our understanding about potential impact art presence can have on changes stay relatively stable even during volatile market times..

    By combining this data with other datasets related to demographics, infrastructure and socioeconomics present within londons different areas we can gain further insight which then allows us making informed decisions when it comes investing particular locations .

    Research Ideas

    • Use this dataset to develop a predictive analytics model to identify areas in London most likely to experience an increase in residential property prices associated with the presence of art.
    • Use this dataset to develop strategies and policies that promote both artistic expression and urban development in Inner London neighborhoods.
    • Compare the presence of art across inner London boroughs, as well as against other cities, to gain insight into the socio-economic conditions related to the visual environment of a city and its impact on life quality for citizens

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    **License: [CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication](https://creativecommons.org/publicd...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Annual change in house prices in the UK 2015-2025, by month [Dataset]. https://www.statista.com/statistics/751619/house-price-change-uk/
Organization logo

Annual change in house prices in the UK 2015-2025, by month

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2015 - Apr 2025
Area covered
United Kingdom
Description

House prices in the UK rose dramatically during the coronavirus pandemic, with growth slowing down in 2022 and turning negative in 2023. The year-on-year annual house price change peaked at 14 percent in July 2022. In April 2025, house prices increased by 3.5 percent. As of late 2024, the average house price was close to 290,000 British pounds. Correction in housing prices: a European phenomenon The trend of a growing residential real estate market was not exclusive to the UK during the pandemic. Likewise, many European countries experienced falling prices in 2023. When comparing residential property RHPI (price index in real terms, e.g. corrected for inflation), countries such as Germany, France, Italy, and Spain also saw prices decline. Sweden, one of the countries with the fastest growing residential markets, saw one of the largest declines in prices. How has demand for UK housing changed since the outbreak of the coronavirus? The easing of the lockdown was followed by a dramatic increase in home sales. In November 2020, the number of mortgage approvals reached an all-time high of over 107,000. One of the reasons for the housing boom were the low mortgage rates, allowing home buyers to take out a loan with an interest rate as low as 2.5 percent. That changed as the Bank of England started to raise the base lending rate, resulting in higher borrowing costs and a decline in homebuyer sentiment.

Search
Clear search
Close search
Google apps
Main menu