Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81โ102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.
The dataset is designed to capture essential attributes for predicting house prices, including:
Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.
Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.
3. Correlation Between Features
A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.
The dataset is well-suited for various machine learning and data analysis applications, including:
House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Task Description: Real Estate Price Prediction
This task involves predicting the price of real estate properties based on various features that influence the value of a property. The dataset contains several attributes of real estate properties such as square footage, the number of bedrooms, bathrooms, floors, the year the property was built, whether the property has a garden or pool, the size of the garage, the location score, and the distance from the city center.
The goal is to build a regression model that can predict the Price of a property based on the provided features.
Dataset Columns:
ID: A unique identifier for each property.
Square_Feet: The area of the property in square meters.
Num_Bedrooms: The number of bedrooms in the property.
Num_Bathrooms: The number of bathrooms in the property.
Num_Floors: The number of floors in the property.
Year_Built: The year the property was built.
Has_Garden: Indicates whether the property has a garden (1 for yes, 0 for no).
Has_Pool: Indicates whether the property has a pool (1 for yes, 0 for no).
Garage_Size: The size of the garage in square meters.
Location_Score: A score from 0 to 10 indicating the quality of the neighborhood (higher scores indicate better neighborhoods).
Distance_to_Center: The distance from the property to the city center in kilometers.
Price: The target variable that represents the price of the property. This is the value we aim to predict.
Objective: The goal of this task is to develop a regression model that predicts the Price of a real estate property using the other features as inputs. The model should be able to learn the relationship between these features and the price, providing an accurate prediction for unseen data.
Facebook
TwitterAfter a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.
Facebook
TwitterAccording to the forecast, house prices in the UK prime property market are expected to increase by almost **** percent by 2029. Growth is expected to accelerate over the five-year period, with 2025 expecting the lowest increase and 2029, the highest.
Facebook
TwitterAccording to the forecast, the North West and Yorkshire & the Humber are the UK regions expected to see the highest overall growth in house prices over the five-year period between 2025 and 2029. Just behind are the North East and West Midlands. In London, house prices are expected to rise by **** percent.
Facebook
TwitterHouse prices in Spain are forecast to fall in 2024, after increasing by *** percent in 2023. Nevertheless, prices are expected to pick up in 2025, with an increase of ***********. The Portuguese housing market, on the other hand, grew by *** percent in 2023, but was forecast to contract in the next two years.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
๐Unlock accurate price predictions with this curated JSON dataset! 100% real property ๐ data from trusted sources, completed with ChatGPT. ๐ท๐ปโโ๏ธ Free for public use. ๐ฎ๐ณ India's popular cities real estate information with there accurate price. Data sorted with unique id and containing string and number values, ๐๏ธ considered with flates and house only which are open to sold or recently solded. Accompanying Python code available on ๐ Git. See More..
Facebook
TwitterAccording to the forecast, house prices in London are expected to continue to increase until 2029. During the five-year period from 2025 to 2029, the house prices for mainstream properties are forecast to rise by **** percent. In 2023, the average house price in London ranged between ******* British pounds and *** million British pounds, depending on the borough. Barking and Dagenham, Bexley, Newham, and Croydon were some of the most affordable boroughs to buy a house.
Facebook
TwitterPrices for prime residential real estate in Central London were expected to decline slightly in 2024, followed by a gradual increase until 2028, according to a *********** forecast. During the five-year period, the prices are forecast to rise by **** percent. In comparison, regional prime property prices and Outer London prime property prices are forecast to grow at a lower rate.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides detailed synthetic records of real estate property features, sale prices, and transaction details, enabling advanced price prediction, market analysis, and investment decision-making. Each record includes comprehensive physical, locational, and transactional attributes, making it ideal for PropTech analytics and modeling.
Facebook
TwitterThis dataset contains the predicted prices of the asset Max Property over the next 16 years. This data is calculated initially using a default 5 percent annual growth rate, and after page load, it features a sliding scale component where the user can then further adjust the growth rate to their own positive or negative projections. The maximum positive adjustable growth rate is 100 percent, and the minimum adjustable growth rate is -100 percent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Sweden increased to 959 points in the third quarter of 2025 from 945 points in the second quarter of 2025. This dataset provides - Sweden House Price Index - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe average house price in Denmark increased sharply in 2021, but growth slowed down to approximately *** percent in 2022. According to the forecast, 2023 is going to see house prices fall by almost **** percent. In 2024, house prices are expected to decrease further by about *** percent. As of 2021, the average sales price of single family homes in Denmark amounted to over *** Danish kroner.
Facebook
TwitterPrices for prime residential real estate in Outer London are expected to grow year-on-year, achieving a cumulative increase of over **** percent until 2029. Growth is expected to be slower at first but accelerate toward the end of the period. Meanwhile, Central London prime property prices are projected to experience a slower growth rate.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in Saudi Arabia decreased to 103.90 points in the third quarter of 2025 from 105 points in the second quarter of 2025. This dataset provides - Saudi Arabia Housing Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
"Charting the Realms of Real Estate: A Holistic and Expansive Dataset Curated for In-Depth House Price Prediction Analysis, Market Trends Evaluation, and Strategic Decision-Making in the Dynamic Landscape of Property Valuation and Investment"
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A housing market prediction that many experts agree on is that it will be a sellerโs market. Home prices are expected to rise for some time due to increased demand and limited supply. Millennials are at the age to start investing in the real estate market for the first time. Hence, the demand for residential and commercial projects is rising with every passing day. The future of real estate will witness a rise in demand and limited supply, resulting in it being a sellerโs market.
Your 1 upvote encourages me to upload more trending datasets. Thanks for your support.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F8355503%2F20827a3fb7a1b4bc6e3227006563692f%2FCapture.PNG?generation=1696752722617297&alt=media" alt="">
If you liked the dataset, please upvote to upload more trending datasets. Thanks for your support.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81โ102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.