This statistic shows the number of registrations of newly diagnosed cases of prostate cancer in England in 2022, by age group. Over **** thousand new cases were reported among men aged 70 to 74 years of age in this year.
Prostate cancer incidence rates in the United States vary significantly across racial and ethnic groups, with Non-Hispanic Black men facing the highest risk. According to recent data, Non-Hispanic Black males have an incidence rate of 194.8 per 100,000 population, which is substantially higher than the overall rate of 120.2 per 100,000. This stark disparity highlights the importance of targeted screening and prevention efforts to address this health inequality. Incidence and mortality trends The burden of prostate cancer in the U.S. has grown in recent years. In 2025, approximately 313,780 men were projected to be diagnosed with prostate cancer, representing a significant increase from previous years. Despite this rising incidence, mortality rates have shown improvement. In 2022, the prostate cancer death rate was 18.7 per 100,000 men, compared to a rate of almost 39 per 100,000 in the year 1990. This decrease reflects advancements in treatment and early detection. Risk factors and survival rates Age remains a critical risk factor for prostate cancer, with men aged 65 to 84 having a 10.6 percent chance of developing the disease. However, there is encouraging news regarding survival rates. From 2014 to 2020, the five-year relative survival rate for prostate cancer patients in the U.S. was an impressive 97 percent. This high survival rate underscores the importance of early detection and the effectiveness of current treatment options.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To investigate the global incidence of prostate cancer with special attention to the changing age structures. Data regarding the cancer incidence and population statistics were retrieved from the International Agency for Research on Cancer in World Health Organization. Eight developing and developed jurisdictions in Asia and the Western countries were selected for global comparison. Time series were constructed based on the cancer incidence rates from 1988 to 2007. The incidence rate of the population aged ≥ 65 was adjusted by the increasing proportion of elderly population, and was defined as the “aging-adjusted incidence rate”. Cancer incidence and population were then projected to 2030. The aging-adjusted incidence rates of prostate cancer in Asia (Hong Kong, Japan and China) and the developing Western countries (Costa Rica and Croatia) had increased progressively with time. In the developed Western countries (the United States, the United Kingdom and Sweden), we observed initial increases in the aging-adjusted incidence rates of prostate cancer, which then gradually plateaued and even decreased with time. Projections showed that the aging-adjusted incidence rates of prostate cancer in Asia and the developing Western countries were expected to increase in much larger extents than the developed Western countries.
From 2019 to 2023, around 34 percent of prostate cancer deaths in the United States were among men aged 75 to 84 years. During that period, the median age of death for prostate cancer was 79 years. This statistic shows the distribution of prostate cancer deaths in the United States between 2019 and 2023, by age.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00624
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveUsing the latest cohort study of prostate cancer patients, explore the epidemiological trend and prognostic factors, and develop a new nomogram to predict the specific survival rate of prostate cancer patients.MethodsPatients with prostate cancer diagnosed from January 1, 1975 to December 31, 2019 in the Surveillance, Epidemiology, and End Results Program (SEER) database were extracted by SEER stat software for epidemiological trend analysis. General clinical information and follow-up data were also collected from 105 135 patients with pathologically diagnosed prostate cancer from January 1, 2010 to December 1, 2019. The factors affecting patient-specific survival were analyzed by Cox regression, and the factors with the greatest influence on specific survival were selected by stepwise regression method, and nomogram was constructed. The model was evaluated by calibration plots, ROC curves, Decision Curve Analysis and C-index.ResultsThere was no significant change in the age-adjusted incidence of prostate cancer from 1975 to 2019, with an average annual percentage change (AAPC) of 0.45 (95% CI:-0.87~1.80). Among the tumor grade, the most significant increase in the incidence of G2 prostate cancer was observed, with an AAPC of 2.99 (95% CI:1.47~4.54); the most significant decrease in the incidence of G4 prostate cancer was observed, with an AAPC of -10.39 (95% CI:-13.86~-6.77). Among the different tumor stages, the most significant reduction in the incidence of localized prostate cancer was observed with an AAPC of -1.83 (95% CI:-2.76~-0.90). Among different races, the incidence of prostate cancer was significantly reduced in American Indian or Alaska Native and Asian or Pacific Islander, with an AAPC of -3.40 (95% CI:-3.97~-2.82) and -2.74 (95% CI:-4.14~-1.32), respectively. Among the different age groups, the incidence rate was significantly increased in 15-54 and 55-64 age groups with AAPC of 4.03 (95% CI:2.73~5.34) and 2.50 (95% CI:0.96~4.05), respectively, and significantly decreased in ≥85 age group with AAPC of -2.50 (95% CI:-3.43~-1.57). In addition, age, tumor stage, race, PSA and gleason score were found to be independent risk factors affecting prostate cancer patient-specific survival. Age, tumor stage, PSA and gleason score were most strongly associated with prostate cancer patient-specific survival by stepwise regression screening, and nomogram prediction model was constructed using these factors. The Concordance indexes are 0.845 (95% CI:0.818~0.872) and 0.835 (95% CI:0.798~0.872) for the training and validation sets, respectively, and the area under the ROC curves (AUC) at 3, 6, and 9 years was 0.7 or more for both the training and validation set samples. The calibration plots indicated a good agreement between the predicted and actual values of the model.ConclusionsAlthough there was no significant change in the overall incidence of prostate cancer in this study, significant changes occurred in the incidence of prostate cancer with different characteristics. In addition, the nomogram prediction model of prostate cancer-specific survival rate constructed based on four factors has a high reference value, which helps physicians to correctly assess the patient-specific survival rate and provides a reference basis for patient diagnosis and prognosis evaluation.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00631
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths from prostate cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Eight-year age standardized incidence rates and crude incidence rates of prostate cancer (per 100 000 population) (2011–2018).
In the period 2018-2019, 2021, it was estimated that U.S. men aged 65 to 84 years and older had a **** percent chance of developing prostate cancer. This statistic shows the probability of males in the United States developing prostate cancer in 2018-2019, 2021, by age.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Evaluation of regional variation of prostate cancer (PCa) incidence and PCa-specific mortality is essential in the assessment of equity in a national healthcare system. We evaluated PCa incidence and PCa-specific mortality between different municipalities and hospital districts in Finland over 1985–2019. Men diagnosed with PCa in Finland from 1985 through 2019 were retrieved from Finnish Cancer Registry. Age-standardized PCa incidence and mortality rates were estimated by municipality and hospital district as well as municipality urbanization, education, and income level using hierarchical Bayesian modeling. Standard deviations (SD) of the regional rates were compared between periods from 1985–1989 to 2015–2019. We identified 123,185 men diagnosed with any stage PCa between 1985 and 2019. SD of PCa incidence rate (per 100,000 person-years) showed that the total variation of PCa incidence between different municipalities was substantial and varied over time: from 22.2 (95% CI, 17.1–27.8) in 1985–1989 to 56.5 (95% CI, 49.8–64.5) in 2000–2004. The SD of PCa mortality rate between all municipalities was from 9.0 (95% CI, 6.6–11.8) in 2005–2009 to 2.4 (95% CI, 0.9–4.8) in 2015–2019. There was a trend toward a lower PCa-specific mortality rate in municipalities with higher education level. Regional variation in the incidence rate of PCa became more evident after initiation of PSA testing in Finland, which indicates that early diagnostic practice (PSA testing) of PCa has been different in different parts of the country. Variation in the national PCa mortality rate was indeed recognizable, however, this variation diminished at the same time as the mortality rate declined in Finland. It seems that after the initiation period of PSA testing, PSA has equalized PCa mortality outcomes in Finland.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Years of Life Lost (YLL) as a result of death from prostate cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Number and percentage of incident cases of prostate cancer and deaths by age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe United States Preventive Services Task Force supports individualised decision-making for prostate-specific antigen (PSA)-based screening in men aged 55–69. Knowing how the potential benefits and harms of screening vary by an individual’s risk of developing prostate cancer could inform decision-making about screening at both an individual and population level. This modelling study examined the benefit–harm tradeoffs and the cost-effectiveness of a risk-tailored screening programme compared to age-based and no screening.Methods and findingsA life-table model, projecting age-specific prostate cancer incidence and mortality, was developed of a hypothetical cohort of 4.48 million men in England aged 55 to 69 years with follow-up to age 90. Risk thresholds were based on age and polygenic profile. We compared no screening, age-based screening (quadrennial PSA testing from 55 to 69), and risk-tailored screening (men aged 55 to 69 years with a 10-year absolute risk greater than a threshold receive quadrennial PSA testing from the age they reach the risk threshold). The analysis was undertaken from the health service perspective, including direct costs borne by the health system for risk assessment, screening, diagnosis, and treatment. We used probabilistic sensitivity analyses to account for parameter uncertainty and discounted future costs and benefits at 3.5% per year. Our analysis should be considered cautiously in light of limitations related to our model’s cohort-based structure and the uncertainty of input parameters in mathematical models. Compared to no screening over 35 years follow-up, age-based screening prevented the most deaths from prostate cancer (39,272, 95% uncertainty interval [UI]: 16,792–59,685) at the expense of 94,831 (95% UI: 84,827–105,630) overdiagnosed cancers. Age-based screening was the least cost-effective strategy studied. The greatest number of quality-adjusted life-years (QALYs) was generated by risk-based screening at a 10-year absolute risk threshold of 4%. At this threshold, risk-based screening led to one-third fewer overdiagnosed cancers (64,384, 95% UI: 57,382–72,050) but averted 6.3% fewer (9,695, 95% UI: 2,853–15,851) deaths from prostate cancer by comparison with age-based screening. Relative to no screening, risk-based screening at a 4% 10-year absolute risk threshold was cost-effective in 48.4% and 57.4% of the simulations at willingness-to-pay thresholds of GBP£20,000 (US$26,000) and £30,000 ($39,386) per QALY, respectively. The cost-effectiveness of risk-tailored screening improved as the threshold rose.ConclusionsBased on the results of this modelling study, offering screening to men at higher risk could potentially reduce overdiagnosis and improve the benefit–harm tradeoff and the cost-effectiveness of a prostate cancer screening program. The optimal threshold will depend on societal judgements of the appropriate balance of benefits–harms and cost-effectiveness.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Variables included in the best fitted models for different types of cancer mortality; main variables are denoted as age (a), year (t), gender (g), region (r), deprivation (d), average age-at-diagnosis (AAD), with corresponding interactions shown as, e.g., a:t.
From 2018 to 2022, around 43 percent of prostate cancer cases in the United States were among men aged 65 to 74 years. During that period, the median age at diagnosis for prostate cancer was 68 years. This statistic shows the distribution of prostate cancer cases in the United States in the period 2018-2022, by age.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains comprehensive clinical, pathological, and follow-up data from 600 prostate cancer patients. The data includes:
Clinical Parameters:
- Patient demographics (age)
- Initial diagnosis details (PSA, clinical stage, biopsy Gleason score)
- Risk stratification
- Laboratory values (albumin, lymphocyte count, CRP, NLR, CALLY Index)
- Comorbidity scores
Treatment Information:
- Treatment type (surgery, radiotherapy, hormone therapy, or combinations)
- Treatment dates
- Radiation doses
- Androgen deprivation therapy details
Pathological Outcomes:
- Pathological stage
- Surgical margin status
- Final Gleason score
Follow-up Data:
- PSA measurements (nadir and at 3, 6, 12 months)
- Biochemical recurrence status and dates
- Metastasis information
- Survival status
- Last follow-up dates
The dataset is anonymized and includes 30 variables across 600 patients, making it valuable for:
- Clinical research in prostate cancer
- Outcome prediction studies
- Treatment response analysis
- Risk stratification model development
- Machine learning applications in oncology
Data format: CSV file
Time period: 2020-2024
https://www.delveinsight.com/terms-and-conditionshttps://www.delveinsight.com/terms-and-conditions
The Prostate Cancer Epidemiology Forecast Report provides incidence/prevalence, diagnosed patient trends, and long-term forecasts across the US, EU5, and Japan (7MM). It highlights disease dynamics, unmet needs, diagnosis rates, and patient landscape evolution, projecting 2,831,314 5-year Prevalent Prostate Cancer Cases in 2025 across the 7MM
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age-specific, crude, and overall age-standardised rates of prostate cancer in Eritrea (overall age-standardised rates used the hypothetical world population net 2014 for Eritrea and World standard population) 2011–2018.
In 2023, the projected incidence rate of prostate cancer in the Australian population was around *** cases per 100,000 in the ** to ** age group, an incidence rate higher than any other age group. In contrast, the prostate cancer incidence rate was projected to be below *** case per 100,000 amongst the Australian population in age groups less than 39 years.
This statistic shows the number of registrations of newly diagnosed cases of prostate cancer in England in 2022, by age group. Over **** thousand new cases were reported among men aged 70 to 74 years of age in this year.