Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns and profiles that help to reliably identify to which known protein family a new sequence belongs. PROSITE is based at the Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NCBIfam is a collection of protein families, featuring curated multiple sequence alignments, hidden Markov models (HMMs) and annotation, which provides a tool for identifying functionally related proteins based on sequence homology. NCBIfam is maintained at the National Center for Biotechnology Information (Bethesda, MD). NCBIfam includes models from TIGRFAMs, another database of protein families developed at The Institute for Genomic Research, then at the J. Craig Venter Institute (Rockville, MD, US).
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This is a protein data set retrieved from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB).
The PDB archive is a repository of atomic coordinates and other information describing proteins and other important biological macromolecules. Structural biologists use methods such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy to determine the location of each atom relative to each other in the molecule. They then deposit this information, which is then annotated and publicly released into the archive by the wwPDB.
The constantly-growing PDB is a reflection of the research that is happening in laboratories across the world. This can make it both exciting and challenging to use the database in research and education. Structures are available for many of the proteins and nucleic acids involved in the central processes of life, so you can go to the PDB archive to find structures for ribosomes, oncogenes, drug targets, and even whole viruses. However, it can be a challenge to find the information that you need, since the PDB archives so many different structures. You will often find multiple structures for a given molecule, or partial structures, or structures that have been modified or inactivated from their native form.
There are two data files. Both are arranged on "structureId" of the protein:
pdb_data_no_dups.csv contains protein meta data which includes details on protein classification, extraction methods, etc.
data_seq.csv contains >400,000 protein structure sequences.
Original data set down loaded from http://www.rcsb.org/pdb/
Protein data base helped the life science community to study about different diseases and come with new drugs and solution that help the human survival.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PIRSF protein classification system is a network with multiple levels of sequence diversity from superfamilies to subfamilies that reflects the evolutionary relationship of full-length proteins and domains. PIRSF is based at the Protein Information Resource, Georgetown University Medical Centre, Washington DC, US.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HAMAP stands for High-quality Automated and Manual Annotation of Proteins. HAMAP profiles are manually created by expert curators. They identify proteins that are part of well-conserved protein families or subfamilies. HAMAP is based at the SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
Facebook
TwitterPROSITE consists of documentation entries describing protein domains, families and functional sites as well as associated patterns and profiles to identify them [More... / References / Commercial users ]. PROSITE is complemented by ProRule , a collection of rules based on profiles and patterns, which increases the discriminatory power of profiles and patterns by providing additional information about functionally and/or structurally critical amino acids [More...].
Facebook
TwitterCATH Domain Classification List (latest release) - protein structural domains classified into CATH hierarchy.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Custom databases in 12 human tissues.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
"Synthetic protein dataset with sequences, physical properties, and functional classification for machine learning tasks."
This synthetic dataset was created to explore and develop machine learning models in bioinformatics. It contains 20,000 synthetic proteins, each with an amino acid sequence, calculated physicochemical properties, and a functional classification.
While this is a simulated dataset, it was inspired by patterns observed in real protein datasets, such as: - UniProt: A comprehensive database of protein sequences and annotations. - Kyte-Doolittle Scale: Calculations of hydrophobicity. - Biopython: A tool for analyzing biological sequences.
This dataset is ideal for: - Training classification models for proteins. - Exploratory analysis of physicochemical properties of proteins. - Building machine learning pipelines in bioinformatics.
The dataset is divided into two subsets:
- Training: 16,000 samples (proteinas_train.csv).
- Testing: 4,000 samples (proteinas_test.csv).
This dataset was inspired by real bioinformatics challenges and designed to help researchers and developers explore machine learning applications in protein analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developments in sequencing technologies and the sequencing of an ever-increasing number of genomes have revolutionised studies of biodiversity and organismal evolution. This accumulation of data has been paralleled by the creation of numerous public biological databases through which the scientific community can mine the sequences and annotations of genomes, transcriptomes, and proteomes of multiple species. However, to find the appropriate databases and bioinformatic tools for respective inquiries and aims can be challenging. Here, we present a compilation of DNA and protein databases, as well as bioinformatic tools for phylogenetic reconstruction and a wide range of studies on molecular evolution. We provide a protocol for information extraction from biological databases and simple phylogenetic reconstruction using probabilistic and distance methods, facilitating the study of biodiversity and evolution at the molecular level for the broad scientific community.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PRINTS is a compendium of protein fingerprints. A fingerprint is a group of conserved motifs used to characterise a protein family or domain. PRINTS is based at the University of Manchester, UK.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MMseqs2 virus protein database decorated with ICTV taxonomy. Proteins originally retrieved from NCBI NR in 2022-05-19.
Steps for reproduction can be found at https://github.com/apcamargo/ictv-mmseqs2-protein-database
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SFLD (Structure-Function Linkage Database) is a hierarchical classification of enzymes that relates specific sequence-structure features to specific chemical capabilities.
Facebook
TwitterSUPFAM is a database that consists of clusters of potentially related homologous protein domain families, with and without three-dimensional structural information, forming superfamilies. The present release (Release 3.0) of SUPFAM uses homologous families in Pfam (Version 23.0) and SCOP (Release 1.69) which are examples of sequence -alignment and structure classification databases respectively. The two steps involved in setting up of SUPFAM database are * Relating Pfam and SCOP families using a new profile-profile alignment algorithm AlignHUSH. This results in identifying many Pfam families which could be related to a family or superfamily of known structural information. * An all-against-all match among Pfam families with yet unknown structure resulting in identification of related Pfam families forming new potential superfamilies. The SUPFAM database can be used in either the Browse mode or Search mode. In Browse mode you can browse through the Superfamilies, Pfam families or SCOP families. In each of these modes you will be presented with a full list which can be easily browsed. In Search mode, you can search for Pfam families, SCOP families or Superfamilies based on keywords or SCOP/Pfam identifiers of families and superfamilies., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Protein Structure Initiative - TargetTrack protein target registration database (795 MB, gzipped tarball)
The Protein Structure Initiative was a high-throughput structural genomics effort from 2000-2015 focused on developing technologies to enable greater coverage of protein structure space. Over its 15-year tenure, over 100 investigators at 35 centers (see ContributingCenters.xls) declared over 350,000 protein sequences (targets) that they would study using state-of-the-art protein production and structure determination methods. Many of these targets were selected through bioinformatics-based methods to serve as representatives for sequence and structure clusters.
From 2003-2010, these selected sequences and some basic identifying metadata were kept in a database called TargetDB, created at the Research Collaboratory for Structural Bioinformatics at Rutgers University. In 2008, a second database named PepcDB was created to track detailed experimental trial history and the standard protocols used by the PSI centers. These two databases became the principal structural genomics target databases, and were rolled into the PSI Structural Biology Knowledgebase in 2008.
As part of the third phase of the PSI, TargetDB and PepcDB were merged into a single resource, TargetTrack, to facilitate one-stop access to the data as well as expanding the schema to include new required data items. Participating centers deposited the latest status on their active targets and the protocols that were used (along with any deviations) on a weekly or quarterly basis. TargetTrack provided a variety of pre-computed data downloads on a weekly basis as well.
In July 2017, the Structural Biology Knowledgebase ceased operations. The files provided in this tarball represent the final datafiles generated by TargetTrack (timestamp June 30, 2017). Please read the README included in this dataset for descriptions of each file.
The entire TargetTrack datafile in XML format can be found in /TargetTrack XML files/tt.xml.gz
Key documentation can be found in the /Documentation folder.
TargetTrack schema: targetTrack-v1.4.1.pdf
Spreadsheet with TargetTrack enumerations for relevant fields: targetTrackEnumeratedDataItems-v1.4.1-1.xls
Image depicted the XML data schema: targetTrack-v1.4.1.jpg
These files are 868 MB in total size, uncompressed.
To open the tarball, use the command 'tar -zxvf TargetTrack-1Jul2017.tar.gz'
-- created by the PSI Structural Biology Knowledgebase, July 5, 2017
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the updated Diamond2GO reference database built on 12th August 2025.
It is a DIAMOND-formatted protein database (`.dmnd`) consisting of over 27 million sequences derived from the NCBI `nr` dataset, filtered to include only those with Gene Ontology (GO) annotations, and redundancy reduction using MMseqs2 (95% similarity). This version improves sensitivity and annotation coverage compared to the original 2023 release used in the published D2GO manuscript, and the earlier 2025 release.
This database is intended for use with the Diamond2GO tool, which enables rapid GO-term annotation and enrichment analysis for high-throughput sequencing datasets.
For reproducibility of results published using the earlier version (699,409 sequences), please refer to the [v1.0.0 release] https://github.com/rhysf/Diamond2GO/releases/tag/6a035ce
Facebook
TwitterA protein database which connects multiple disparate bioinformatics tools and systems text mining, data mining, analysis and visualization tools, and databases and ontologies.
Facebook
TwitterDatabase of curated links to molecular resources, tools and databases selected on the basis of recommendations from bioinformatics experts in the field. This resource relies on input from its community of bioinformatics users for suggestions. Starting in 2003, it has also started listing all links contained in the NAR Webserver issue. The different types of information available in this portal: * Computer Related: This category contains links to resources relating to programming languages often used in bioinformatics. Other tools of the trade, such as web development and database resources, are also included here. * Sequence Comparison: Tools and resources for the comparison of sequences including sequence similarity searching, alignment tools, and general comparative genomics resources. * DNA: This category contains links to useful resources for DNA sequence analyses such as tools for comparative sequence analysis and sequence assembly. Links to programs for sequence manipulation, primer design, and sequence retrieval and submission are also listed here. * Education: Links to information about the techniques, materials, people, places, and events of the greater bioinformatics community. Included are current news headlines, literature sources, educational material and links to bioinformatics courses and workshops. * Expression: Links to tools for predicting the expression, alternative splicing, and regulation of a gene sequence are found here. This section also contains links to databases, methods, and analysis tools for protein expression, SAGE, EST, and microarray data. * Human Genome: This section contains links to draft annotations of the human genome in addition to resources for sequence polymorphisms and genomics. Also included are links related to ethical discussions surrounding the study of the human genome. * Literature: Links to resources related to published literature, including tools to search for articles and through literature abstracts. Additional text mining resources, open access resources, and literature goldmines are also listed. * Model Organisms: Included in this category are links to resources for various model organisms ranging from mammals to microbes. These include databases and tools for genome scale analyses. * Other Molecules: Bioinformatics tools related to molecules other than DNA, RNA, and protein. This category will include resources for the bioinformatics of small molecules as well as for other biopolymers including carbohydrates and metabolites. * Protein: This category contains links to useful resources for protein sequence and structure analyses. Resources for phylogenetic analyses, prediction of protein features, and analyses of interactions are also found here. * RNA: Resources include links to sequence retrieval programs, structure prediction and visualization tools, motif search programs, and information on various functional RNAs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This work presents the ribosomal protein database of Pseudomonas putida KT2440. Original data for the work came from the annotated proteome data of the bacterium downloaded from UniProt. Using an in-house MATLAB ribosomal protein database analysis software, the original proteome data file was parsed to extract protein name and amino acid sequence of all ribosomal proteins in the species. The database also includes calculated variables such as number of residues, molecular weight, and nucleotide sequence. Overall, the presented database could serve as a ribosomal protein mass fingerprint for use in microbial identification, or it could be used in fundamental studies seeking to uncover new insights into ribosomal protein biology.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PANTHER is a large collection of protein families that have been subdivided into functionally related subfamilies, using human expertise. These subfamilies model the divergence of specific functions within protein families, allowing more accurate association with function, as well as inference of amino acids important for functional specificity. Hidden Markov models (HMMs) are built for each family and subfamily for classifying additional protein sequences. PANTHER is based at the University of Southern California, CA, US.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PROSITE is a database of protein families and domains. It consists of biologically significant sites, patterns and profiles that help to reliably identify to which known protein family a new sequence belongs. PROSITE is based at the Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland.