Note:- Only publicly available Legal data can be worked upon.
Unlock a world of legal information with APISCRAPY's user-friendly services – Federal Court Data, State Court Record Data, legal data scraping, and PACER Data. We've made it simple for anyone, from legal professionals to researchers and businesses, to access over 100 million publicly available legal records.
Our Federal Court Data service provides details on federal legal matters, while State Court Record Data gives insights into state-level legal proceedings. With our legal data scraping capabilities, we ensure you have access to the information you need without any hassle. Plus, our integration with PACER Data ensures a comprehensive and reliable source for legal records.
Key Features:
Federal Court Data: Get insights into legal matters at the federal level, all at your fingertips.
State Court Record Data: Access information on legal proceedings at the state level, tailored to your specific needs.
Legal Data Scraping Made Easy: We've simplified the process of gathering legal data, making it accessible for everyone.
PACER Data Integration: Our platform integrates seamlessly with PACER Data, ensuring a reliable and complete source of legal records.
Over 100 Million Records: APISCRAPY provides access to a vast database of over 100 million publicly available legal records, offering unparalleled insights.
Whether you're a legal professional, researcher, or business looking for easy access to legal information, APISCRAPY's services cater to your needs. Choose us for straightforward and comprehensive legal data services, where simplicity and accessibility meet for your convenience.
[ Related Tags: public court records, online court records, federal court cases, Federal court case number search, find Federal court cases, court case by state, court Datasets, state court data, supreme court data, USA court datasets, Federal Court Data API , Litigation Data, Legal Data, Legal API, Legal Law, Legal Court records, Crime records, County court Datasets, All county court Datasets, Legal Analytics, Legal Intelligence, Legal Research, Attorney Data, Legal Parties Data, Judge Data, Case Research, Data Integration, US legal Data API, pacer case locator, pacer court records, free pacer search, pacer criminal case search, federal courts pacer, pacer API , pacer case locator free ]
Each record in this dataset shows information about an arrest executed by the Chicago Police Department (CPD). Source data comes from the CPD Automated Arrest application. This electronic application is part of the CPD CLEAR (Citizen Law Enforcement Analysis and Reporting) system, and is used to process arrests Department-wide.
A more-detailed version of this dataset is available to media by request. To make a request, please email dataportal@cityofchicago.org with the subject line: Arrests Access Request. Access will require an account on this site, which you may create at https://data.cityofchicago.org/signup. New data fields may be added to this public dataset in the future. Requests for individual arrest reports or any other related data other than access to the more-detailed dataset should be directed to CPD, through contact information on that site or a Freedom of Information Act (FOIA) request.
The data is limited to adult arrests, defined as any arrest where the arrestee was 18 years of age or older on the date of arrest. The data excludes arrest records expunged by CPD pursuant to the Illinois Criminal Identification Act (20 ILCS 2630/5.2).
Department members use charges that appear in Illinois Compiled Statutes or Municipal Code of Chicago. Arrestees may be charged with multiple offenses from these sources. Each record in the dataset includes up to four charges, ordered by severity and with CHARGE1 as the most severe charge. Severity is defined based on charge class and charge type, criteria that are routinely used by Illinois court systems to determine penalties for conviction. In case of a tie, charges are presented in the order that the arresting officer listed the charges on the arrest report. By policy, Department members are provided general instructions to emphasize seriousness of the offense when ordering charges on an arrest report.
Each record has an additional set of columns where a charge characteristic (statute, description, type, or class) for all four charges, or fewer if there were not four charges, is concatenated with the | character. These columns can be used with the Filter function's "Contains" operator to find all records where a value appears, without having to search four separate columns.
Users interested in learning more about CPD arrest processes can review current directives, using the CPD Automated Directives system (http://directives.chicagopolice.org/directives/). Relevant directives include:
• Special Order S06-01-11 – CLEAR Automated Arrest System: describes the application used by Department members to enter arrest data. • Special Order S06-01-04 – Arrestee Identification Process: describes processes related to obtaining and using CB numbers. • Special Order S09-03-04 – Assignment and Processing of Records Division Numbers: describes processes related to obtaining and using RD numbers. • Special Order 06-01 – Processing Persons Under Department Control: describes required tasks associated with arrestee processing, include the requirement that Department members order charges based on severity.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Google Patents Public Data, provided by IFI CLAIMS Patent Services, is a worldwide bibliographic and US full-text dataset of patent publications. Patent information accessibility is critical for examining new patents, informing public policy decisions, managing corporate investment in intellectual property, and promoting future scientific innovation. The growing number of available patent data sources means researchers often spend more time downloading, parsing, loading, syncing and managing local databases than conducting analysis. With these new datasets, researchers and companies can access the data they need from multiple sources in one place, thus spending more time on analysis than data preparation.
The Google Patents Public Data dataset contains a collection of publicly accessible, connected database tables for empirical analysis of the international patent system.
Data Origin: https://bigquery.cloud.google.com/dataset/patents-public-data:patents
For more info, see the documentation at https://developers.google.com/web/tools/chrome-user-experience-report/
“Google Patents Public Data” by IFI CLAIMS Patent Services and Google is licensed under a Creative Commons Attribution 4.0 International License.
Banner photo by Helloquence on Unsplash
This application by the Iowa Department of Public Health Bureau of Professional Licensure allows you to search licenses issued by the Bureau of Professional Licensure. Entries can be searched by personal name, license type and other criteria.
CLEAR has public record information and is also used for law enforcement and investigations, including personal identification and financial records, police reports, and credential verification services.
https://data.go.kr/ugs/selectPortalPolicyView.dohttps://data.go.kr/ugs/selectPortalPolicyView.do
This is a list search service provided by the public data portal. Provides metadata and aggregate figures for keywords searched on public data portals.
Public access allowing for public search of the FDA Adverse Events Database
The DataCite Public Data File contains metadata records in JSON format for all DataCite DOIs in Findable state that were registered up to the end of 2023.
This dataset represents a processed version of the Public Data File, where the data have been extracted and loaded into a Redivis dataset.
The DataCite Public Data File contains metadata records in JSON format for all DataCite DOIs in Findable state that were registered up to the end of 2023.
Records have descriptive metadata for research outputs and resources structured according to the DataCite Metadata Schema and include links to other persistent identifiers (PIDs) for works (DOIs), people (ORCID iDs), and organizations (ROR IDs).
Use of the DataCite Public Data File is subject to the DataCite Data File Use Policy.
This datasets is a processed version of the DataCite public data file, where the original file (a 23GB .tar.gz) has been extracted into 55,239 JSONL files, that were then concatenated into a single JSONL file.
This JSONL file has been imported into a Redivis table to facilitate further exploration and analysis.
A sample project demonstrating how to query the DataCite data file can be found here: https://redivis.com/projects/hx1e-a6w8vmwsx
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, _domain-specific databases, and the top journals compare how much data is in institutional vs. _domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find _domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known _domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were _domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of _domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared _domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the _domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Google Patents Public Data, provided by IFI CLAIMS Patent Services, is a worldwide bibliographic and US full-text dataset of patent publications.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Public Records Management Software (PRMS) market, valued at $682.2 million in 2025, is poised for significant growth. Driven by increasing government regulations surrounding data privacy and accessibility, coupled with the rising need for efficient record-keeping and streamlined citizen services, the market is experiencing a surge in demand. Cloud-based solutions are leading the adoption, offering scalability, cost-effectiveness, and improved accessibility compared to on-premise systems. Government agencies are major consumers, followed by educational institutions and other public entities. The market's expansion is further fueled by the growing adoption of advanced technologies like AI and machine learning for improved search capabilities, data analytics, and automated workflows within PRMS. This allows for quicker retrieval of information, better compliance with regulations, and enhanced transparency in public processes. While initial investment costs can be a restraint, the long-term benefits of improved efficiency and risk mitigation are driving adoption. The market's competitive landscape includes both established players like Tyler Technologies and Hyland, and emerging innovative companies like NextRequest and GovQA, offering a wide range of solutions catering to diverse needs and budgets. Future growth will likely be influenced by the ongoing digital transformation in the public sector and the increasing need for secure and interoperable record management systems. The geographical distribution of the PRMS market reflects a strong presence in North America, driven by early adoption and robust regulatory frameworks. Europe and Asia-Pacific regions are also exhibiting significant growth potential due to increasing digitization initiatives and rising government investments in modernizing their record management systems. Competitive dynamics are characterized by a mix of large established vendors offering comprehensive suites and smaller niche players focusing on specific functionalities or vertical markets. Strategic partnerships and acquisitions are likely to shape the competitive landscape further, leading to consolidation and the emergence of stronger players. The future will likely see a stronger focus on data security, compliance with evolving regulations (like GDPR and CCPA), and the integration of PRMS with other government systems to create a unified and efficient digital ecosystem.
Update September 20, 2021: Data and overview updated to reflect data used in the September 15 story Over Half of States Have Rolled Back Public Health Powers in Pandemic. It includes 303 state or local public health leaders who resigned, retired or were fired between April 1, 2020 and Sept. 12, 2021. Previous versions of this dataset reflected data used in the Dec. 2020 and April 2021 stories.
Across the U.S., state and local public health officials have found themselves at the center of a political storm as they combat the worst pandemic in a century. Amid a fractured federal response, the usually invisible army of workers charged with preventing the spread of infectious disease has become a public punching bag.
In the midst of the coronavirus pandemic, at least 303 state or local public health leaders in 41 states have resigned, retired or been fired since April 1, 2020, according to an ongoing investigation by The Associated Press and KHN.
According to experts, that is the largest exodus of public health leaders in American history.
Many left due to political blowback or pandemic pressure, as they became the target of groups that have coalesced around a common goal — fighting and even threatening officials over mask orders and well-established public health activities like quarantines and contact tracing. Some left to take higher profile positions, or due to health concerns. Others were fired for poor performance. Dozens retired. An untold number of lower level staffers have also left.
The result is a further erosion of the nation’s already fragile public health infrastructure, which KHN and the AP documented beginning in 2020 in the Underfunded and Under Threat project.
The AP and KHN found that:
To get total numbers of exits by state, broken down by state and local departments, use this query
KHN and AP counted how many state and local public health leaders have left their jobs between April 1, 2020 and Sept. 12, 2021.
The government tasks public health workers with improving the health of the general population, through their work to encourage healthy living and prevent infectious disease. To that end, public health officials do everything from inspecting water and food safety to testing the nation’s babies for metabolic diseases and contact tracing cases of syphilis.
Many parts of the country have a health officer and a health director/administrator by statute. The analysis counted both of those positions if they existed. For state-level departments, the count tracks people in the top and second-highest-ranking job.
The analysis includes exits of top department officials regardless of reason, because no matter the reason, each left a vacancy at the top of a health agency during the pandemic. Reasons for departures include political pressure, health concerns and poor performance. Others left to take higher profile positions or to retire. Some departments had multiple top officials exit over the course of the pandemic; each is included in the analysis.
Reporters compiled the exit list by reaching out to public health associations and experts in every state and interviewing hundreds of public health employees. They also received information from the National Association of City and County Health Officials, and combed news reports and records.
Public health departments can be found at multiple levels of government. Each state has a department that handles these tasks, but most states also have local departments that either operate under local or state control. The population served by each local health department is calculated using the U.S. Census Bureau 2019 Population Estimates based on each department’s jurisdiction.
KHN and the AP have worked since the spring on a series of stories documenting the funding, staffing and problems around public health. A previous data distribution detailed a decade's worth of cuts to state and local spending and staffing on public health. That data can be found here.
Findings and the data should be cited as: "According to a KHN and Associated Press report."
If you know of a public health official in your state or area who has left that position between April 1, 2020 and Sept. 12, 2021 and isn't currently in our dataset, please contact authors Anna Maria Barry-Jester annab@kff.org, Hannah Recht hrecht@kff.org, Michelle Smith mrsmith@ap.org and Lauren Weber laurenw@kff.org.
https://whoisdatacenter.com/terms-of-use/https://whoisdatacenter.com/terms-of-use/
Explore the historical Whois records related to public-records-search.net (Domain). Get insights into ownership history and changes over time.
UniCourt’s PACER API provides you with a real-time interface and bulk access to the entire PACER database of civil and criminal federal court data from U.S. District Courts, Bankruptcy Courts, Courts of Appeal, and more.
Our PACER API fully integrates with PACER data so you can streamline pulling the court data you need to automate your internal workflows while saving money on outrageous fees.
Leave behind PACER’s outdated search tools for a modern case search with the precision you need.
Search Smarter and Curb Costs
• With UniCourt’s PACER API you can download the court data you need and lower your PACER costs by pulling data smarter. • When you search for court cases using our API for PACER, your search results show (1) which cases are already available in UniCourt, (2) when they were added to our database and last updated, and (3) the UniCourt Case IDs for each case so you can easily pull any additional data you need. • Don’t pay for PACER data when you don’t have to and stop wasting time logging into PACER everyday when there’s a smarter way to search.
Bulk Access to PACER Data and Documents
• Get the complete historical data set you need for criminal and civil PACER data seamlessly integrated with all your internal applications and client facing solutions. • Leverage UniCourt's extensive free repository of case metadata, docket entries, and court documents to get bulk API access to PACER data without breaking your budget. • Get bulk court data from PACER that has been normalized with our artificial intelligence and enriched with other public data sets like attorney bar data, Secretary of State data, and judicial data.
Track PACER Litigation at Scale
• Combine the power of UniCourt’s PACER API with our Court Data API to track your litigation at scale. • Automatically track PACER cases with ease and receive alerts when new docket updates are available so you never miss a federal court filing. • Save money on outrageous PACER fees by leveraging the sophisticated algorithms we’ve developed to intelligently track court cases in bulk without incurring over-the-top fees.
It was recently proposed that long-term population studies be exempted from the expectation that authors publicly archive the primary data underlying published articles. Such studies are valuable to many areas of ecological and evolutionary biological research, and multiple risks to their viability were anticipated as a result of public data archiving (PDA), ultimately all stemming from independent reuse of archived data. However, empirical assessment was missing, making it difficult to determine whether such fears are realistic. I addressed this by surveying data packages from long-term population studies archived in the Dryad Digital Repository. I found no evidence that PDA results in reuse of data by independent parties, suggesting the purported costs of PDA for long-term population studies have been overstated.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by public health jurisdictions using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19. Current versions of these case definitions are available at: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. States and territories continue to use this form.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations: COVID Data Tracker; United States COVID-19 Cases and Deaths by State; COVID-19 Vaccination Reporting Data Systems; and COVID-19 Death Data and Resources.
Notes:
March 1, 2022: The "COVID-19 Case Surveillance Public Use Data with Geography" will be updated on a monthly basis.
April 7, 2022: An adjustment was made to CDC’s cleaning algorithm for COVID-19 line level case notification data. An assumption in CDC's algorithm led to misclassifying deaths that were not COVID-19 related. The algorithm has since been revised, and this dataset update reflects corrected individual level information about death status for all cases collected to date.
June 25, 2024: An adjustment
Use the Records Search to do the following: Search for records, such as agreements with other government agencies, maps and other documents from the Public Works, Transportation, and Planning, Building and Development departments.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The Public Records Management (PRM) tool market is experiencing robust growth, driven by increasing government regulations, the need for enhanced data security, and the rising adoption of cloud-based solutions. The market, estimated at $2 billion in 2025, is projected to expand significantly over the forecast period (2025-2033), with a Compound Annual Growth Rate (CAGR) of approximately 15%. This growth is fueled by several key factors. Firstly, the increasing volume of public records necessitates efficient management systems capable of handling large datasets and ensuring quick retrieval. Secondly, the shift towards digitalization and the growing preference for cloud-based solutions are contributing significantly to market expansion. Cloud-based PRM tools offer scalability, accessibility, and cost-effectiveness, making them attractive to government agencies and institutions of all sizes. Furthermore, rising cybersecurity concerns are driving demand for secure PRM solutions that protect sensitive public data from breaches and unauthorized access. The market segmentation reveals a strong preference for cloud-based solutions across various applications, including government and institutional sectors. Competition is fierce, with established players like Tyler Technologies and Hyland alongside innovative companies like NextRequest and ArkCase vying for market share. Geographic expansion is another prominent trend, with North America and Europe currently holding the largest market share, while Asia-Pacific is anticipated to witness significant growth in the coming years. The major restraints to market growth include the high initial investment cost for implementing PRM systems, especially on-premise solutions. Integration challenges with existing legacy systems can also hinder adoption. However, these challenges are being addressed by the emergence of user-friendly, cost-effective cloud-based solutions and improved integration capabilities. The market is also evolving towards incorporating advanced technologies such as Artificial Intelligence (AI) and machine learning (ML) for tasks like automated data classification, improved search functionality, and predictive analytics. This technological evolution promises to further enhance efficiency and optimize data management within public records systems. This technological advancement, coupled with the ongoing need for effective data governance and security, ensures continued growth for the PRM tool market in the long term.
OpenWeb Ninja's Google Images Data (Google SERP Data) API provides real-time image search capabilities for images sourced from all public sources on the web.
The API enables you to search and access more than 100 billion images from across the web including advanced filtering capabilities as supported by Google Advanced Image Search. The API provides Google Images Data (Google SERP Data) including details such as image URL, title, size information, thumbnail, source information, and more data points. The API supports advanced filtering and options such as file type, image color, usage rights, creation time, and more. In addition, any Advanced Google Search operators can be used with the API.
OpenWeb Ninja's Google Images Data & Google SERP Data API common use cases:
Creative Media Production: Enhance digital content with a vast array of real-time images, ensuring engaging and brand-aligned visuals for blogs, social media, and advertising.
AI Model Enhancement: Train and refine AI models with diverse, annotated images, improving object recognition and image classification accuracy.
Trend Analysis: Identify emerging market trends and consumer preferences through real-time visual data, enabling proactive business decisions.
Innovative Product Design: Inspire product innovation by exploring current design trends and competitor products, ensuring market-relevant offerings.
Advanced Search Optimization: Improve search engines and applications with enriched image datasets, providing users with accurate, relevant, and visually appealing search results.
OpenWeb Ninja's Annotated Imagery Data & Google SERP Data Stats & Capabilities:
100B+ Images: Access an extensive database of over 100 billion images.
Images Data from all Public Sources (Google SERP Data): Benefit from a comprehensive aggregation of image data from various public websites, ensuring a wide range of sources and perspectives.
Extensive Search and Filtering Capabilities: Utilize advanced search operators and filters to refine image searches by file type, color, usage rights, creation time, and more, making it easy to find exactly what you need.
Rich Data Points: Each image comes with more than 10 data points, including URL, title (annotation), size information, thumbnail, and source information, providing a detailed context for each image.
State and Local Public Health Departments in the United States Governmental public health departments are responsible for creating and maintaining conditions that keep people healthy. A local health department may be locally governed, part of a region or district, be an office or an administrative unit of the state health department, or a hybrid of these. Furthermore, each community has a unique "public health system" comprising individuals and public and private entities that are engaged in activities that affect the public's health. (Excerpted from the Operational Definition of a functional local health department, National Association of County and City Health Officials, November 2005) Please reference http://www.naccho.org/topics/infrastructure/accreditation/upload/OperationalDefinitionBrochure-2.pdf for more information. Facilities involved in direct patient care are intended to be excluded from this dataset; however, some of the entities represented in this dataset serve as both administrative and clinical locations. This dataset only includes the headquarters of Public Health Departments, not their satellite offices. Some health departments encompass multiple counties; therefore, not every county will be represented by an individual record. Also, some areas will appear to have over representation depending on the structure of the health departments in that particular region. Town health officers are included in Vermont and boards of health are included in Massachusetts. Both of these types of entities are elected or appointed to a term of office during which they make and enforce policies and regulations related to the protection of public health. Visiting nurses are represented in this dataset if they are contracted through the local government to fulfill the duties and responsibilities of the local health organization. Since many town health officers in Vermont work out of their personal homes, TechniGraphics represented these entities at the town hall. This is denoted in the [DIRECTIONS] field. Effort was made by TechniGraphics to verify whether or not each health department tracks statistics on communicable diseases. Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard HSIP fields populated by TechniGraphics. Double spaces were replaced by single spaces in these same fields. At the request of NGA, text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. At the request of NGA, all diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] field. Based on this field, the oldest record dates from 11/18/2009 and the newest record dates from 01/08/2010.
Note:- Only publicly available Legal data can be worked upon.
Unlock a world of legal information with APISCRAPY's user-friendly services – Federal Court Data, State Court Record Data, legal data scraping, and PACER Data. We've made it simple for anyone, from legal professionals to researchers and businesses, to access over 100 million publicly available legal records.
Our Federal Court Data service provides details on federal legal matters, while State Court Record Data gives insights into state-level legal proceedings. With our legal data scraping capabilities, we ensure you have access to the information you need without any hassle. Plus, our integration with PACER Data ensures a comprehensive and reliable source for legal records.
Key Features:
Federal Court Data: Get insights into legal matters at the federal level, all at your fingertips.
State Court Record Data: Access information on legal proceedings at the state level, tailored to your specific needs.
Legal Data Scraping Made Easy: We've simplified the process of gathering legal data, making it accessible for everyone.
PACER Data Integration: Our platform integrates seamlessly with PACER Data, ensuring a reliable and complete source of legal records.
Over 100 Million Records: APISCRAPY provides access to a vast database of over 100 million publicly available legal records, offering unparalleled insights.
Whether you're a legal professional, researcher, or business looking for easy access to legal information, APISCRAPY's services cater to your needs. Choose us for straightforward and comprehensive legal data services, where simplicity and accessibility meet for your convenience.
[ Related Tags: public court records, online court records, federal court cases, Federal court case number search, find Federal court cases, court case by state, court Datasets, state court data, supreme court data, USA court datasets, Federal Court Data API , Litigation Data, Legal Data, Legal API, Legal Law, Legal Court records, Crime records, County court Datasets, All county court Datasets, Legal Analytics, Legal Intelligence, Legal Research, Attorney Data, Legal Parties Data, Judge Data, Case Research, Data Integration, US legal Data API, pacer case locator, pacer court records, free pacer search, pacer criminal case search, federal courts pacer, pacer API , pacer case locator free ]