100+ datasets found
  1. d

    Declassified Satellite Imagery 2 (2002)

    • catalog.data.gov
    • gimi9.com
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). Declassified Satellite Imagery 2 (2002) [Dataset]. https://catalog.data.gov/dataset/declassified-satellite-imagery-2-2002
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.

  2. a

    Satellite Maps 3D Scene 2023 - for website

    • noaa.hub.arcgis.com
    Updated Jul 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2023). Satellite Maps 3D Scene 2023 - for website [Dataset]. https://noaa.hub.arcgis.com/maps/320e766fff7d4b5a8280c86373ee60e0
    Explore at:
    Dataset updated
    Jul 24, 2023
    Dataset authored and provided by
    NOAA GeoPlatform
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.For additional imagery from NOAA's GOES East and GOES West satellites, please visit our Imagery and Data page or our cooperative institute partners at CIRA and CIMSS.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues. Using the Maps​What does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why are the North and South Poles dark?The raw satellite data used in these web map apps goes through several processing steps after it has been acquired from space. These steps translate the raw data into geospatial data and imagery projected onto a map. NOAA Satellite Maps uses the Mercator projection to portray the Earth's 3D surface in two dimensions. This Mercator projection does not include data at 80 degrees north and south latitude due to distortion, which is why the poles appear black in these maps. NOAA's polar satellites are a critical resource in acquiring operational data at the poles of the Earth and some of this imagery is available on our website (for example, here ).Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?NOAA Satellite Maps offers an interoperable map service to the public. Use the camera tool to select the area of the map you would like to capture and click ‘download GIS WorldFile.’The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages. About this satellite imageryWhat am I looking at in these maps?What am I seeing in the NOAA Satellite Maps 3D Scene?There are four options to choose from, each depicting a different view of the Earth using the latest satellite imagery available. The first three views show the Western Hemisphere and the Pacific Ocean, as captured by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. These images are updated approximately every 15 minutes as we receive data from the satellites in space. The three views show GeoColor, infrared and water vapor. See our other FAQs to learn more about what the imagery layering options depict.The fourth option is a global view, captured by NOAA’s polar-orbiting satellites (NOAA/NASA Suomi NPP and NOAA-20). The polar satellites circle the globe 14 times a day, taking in one complete view of the Earth in daylight every 24 hours. This composite view is what is projected onto the 3D map scene each morning, so you are seeing how the Earth looked from space one day ago.What am I seeing in the Latest 24 Hrs. GOES Constellation Map?In this map you are seeing the past 24 hours (updated approximately every 15 minutes) of the Western Hemisphere and Pacific Ocean, as seen by the NOAA GOES East (GOES-16) and GOES West (GOES-17) satellites. In this map you can also view three different ‘layers’. The three views show ‘GeoColor’ ‘infrared’ and ‘water vapor’.(Please note: GOES West imagery is currently only available in GeoColor. The infrared and water vapor imagery will be available in Spring 2019.)This maps shows the coverage area of the GOES East and GOES West satellites. GOES East, which orbits the Earth from 75.2 degrees west longitude, provides a continuous view of the Western Hemisphere, from the West Coast of Africa to North and South America. GOES West, which orbits the Earth at 137.2 degrees west longitude, sees western North and South America and the central and eastern Pacific Ocean all the way to New Zealand.What am I seeing in the Global Archive Map?In this map, you will see the whole Earth as captured each day by our polar satellites, based on our multi-year archive of data. This data is provided by NOAA’s polar orbiting satellites (NOAA/NASA Suomi NPP from January 2014 to April 19, 2018 and NOAA-20 from April 20, 2018 to today). The polar satellites circle the globe 14 times a day taking in one complete view of the Earth every 24 hours. This complete view is what is projected onto the flat map scene each morning.What does the GOES GeoColor imagery show?The 'Merged GeoColor’ map shows the coverage area of the GOES East and GOES West satellites and includes the entire Western Hemisphere and most of the Pacific Ocean. This imagery uses a combination of visible and infrared channels and is updated approximately every 15 minutes in real time. GeoColor imagery approximates how the human eye would see Earth from space during daylight hours, and is created by combining several of the spectral channels from the Advanced Baseline Imager (ABI) – the primary instrument on the GOES satellites. The wavelengths of reflected sunlight from the red and blue portions of the spectrum are merged with a simulated green wavelength component, creating RGB (red-green-blue) imagery. At night, infrared imagery shows high clouds as white and low clouds and fog as light blue. The static city lights background basemap is derived from a single composite image from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band. For example, temporary power outages will not be visible. Learn more.What does the GOES infrared map show?The 'GOES infrared' map displays heat radiating off of clouds and the surface of the Earth and is updated every 15 minutes in near real time. Higher clouds colorized in orange often correspond to more active weather systems. This infrared band is one of 12 channels on the Advanced Baseline Imager, the primary instrument on both the GOES East and West satellites. on the GOES the multiple GOES East ABI sensor’s infrared bands, and is updated every 15 minutes in real time. Infrared satellite imagery can be "colorized" or "color-enhanced" to bring out details in cloud patterns. These color enhancements are useful to meteorologists because they signify “brightness temperatures,” which are approximately the temperature of the radiating body, whether it be a cloud or the Earth’s surface. In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are usually “clear sky,” while pale white areas typically indicate low-level clouds. During a hurricane, cloud top temperatures will be higher (and colder), and therefore appear dark red. This imagery is derived from band #13 on the GOES East and GOES West Advanced Baseline Imager.How does infrared satellite imagery work?The infrared (IR) band detects radiation that is emitted by the Earth’s surface, atmosphere and clouds, in the “infrared window” portion of the spectrum. The radiation has a wavelength near 10.3 micrometers, and the term “window” means that it passes through the atmosphere with relatively little absorption by gases such as water vapor. It is useful for estimating the emitting temperature of the Earth’s surface and cloud tops. A major advantage of the IR band is that it can sense energy at night, so this imagery is available 24 hours a day.What do the colors on the infrared map represent?In this imagery, yellow and orange areas signify taller/colder clouds, which often correlate with more active weather systems. Blue areas are clear sky, while pale white areas indicate low-level clouds, or potentially frozen surfaces. Learn more about this weather imagery.What does the GOES water vapor map layer show?The GOES ‘water vapor’ map displays the concentration and location of clouds and water vapor in the atmosphere and shows data from both the GOES East and GOES West satellites. Imagery is updated approximately every 15 minutes in

  3. R

    Data from: Satellite Image Classification Dataset

    • universe.roboflow.com
    zip
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    satellite image classification (2024). Satellite Image Classification Dataset [Dataset]. https://universe.roboflow.com/satellite-image-classification/satellite-image-classification
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 10, 2024
    Dataset authored and provided by
    satellite image classification
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Tanks Vehicles Tents Bounding Boxes
    Description

    Satellite Image Classification

    ## Overview
    
    Satellite Image Classification is a dataset for object detection tasks - it contains Tanks Vehicles Tents annotations for 101 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  4. The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired...

    • zenodo.org
    application/gzip, csv +2
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis (2024). The WorldStrat Dataset: Open High-Resolution Satellite Imagery With Paired Multi-Temporal Low-Resolution [Dataset]. http://doi.org/10.5281/zenodo.6810792
    Explore at:
    csv, application/gzip, txt, pdfAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julien Cornebise; Julien Cornebise; Ivan Oršolić; Ivan Oršolić; Freddie Kalaitzis; Freddie Kalaitzis
    Description

    What is this dataset?

    Nearly 10,000 km² of free high-resolution and matched low-resolution satellite imagery of unique locations which ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities.

    Those locations are also enriched with typically under-represented locations in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk.

    Each high-resolution image (1.5 m/pixel) comes with multiple temporally-matched low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites (10 m/pixel).

    We accompany this dataset with a paper, datasheet for datasets and an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox.

    Why make this?

    We hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop the same power of analysis allowed by costly private high-resolution imagery from free public low-resolution Sentinel2 imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution.

    Licences

    • The high-resolution Airbus imagery is distributed, with authorization from Airbus, under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
    • The labels, Sentinel2 imagery, and trained weights are released under Creative Commons with Attribution 4.0 International (CC BY 4.0).
    • The source code (will be shortly released on GitHub) under 3-Clause BSD license.
  5. Detection of Areas with Human Vulnerability Using Public Satellite Images...

    • zenodo.org
    zip
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Flavio de Barros Vidal; Flavio de Barros Vidal (2024). Detection of Areas with Human Vulnerability Using Public Satellite Images and Deep Learning (Dataset) [Dataset]. http://doi.org/10.5281/zenodo.13768463
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Flavio de Barros Vidal; Flavio de Barros Vidal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2023
    Description

    Overview

    This repository contains the code and resources for the project titled "Detection of Areas with Human Vulnerability Using Public Satellite Images and Deep Learning". The goal of this project is to identify regions where individuals are living under precarious conditions and facing neglected basic needs, a situation often seen in Brazil. This concept is referred to as "human vulnerability" and is exemplified by families living in inadequate shelters or on the streets in both urban and rural areas.

    Focusing on the Federal District of Brazil as the research area, this project aims to develop two novel public datasets consisting of satellite images. The datasets contain imagery captured at 50m and 100m scales, covering regions of human vulnerability, traditional areas, and improperly disposed waste sites.

    The project also leverages these datasets for training deep learning models, including YOLOv7 and other state-of-the-art models, to perform image segmentation. A comparative analysis is conducted between the models using two training strategies: training from scratch with random weight initialization and fine-tuning using pre-trained weights through transfer learning.

    Key Achievements

    • Two new satellite image datasets focusing on human vulnerability and improperly disposed waste sites, available in public domains.
    • Comparison of image segmentation models, including YOLOv7 and Segmentation Models, with performance metrics.
    • Best F1-scores: 0.55 for YOLOv7 and 0.64 for Segmentation Models.

    This repository provides the code, models, and data pipelines used for training, evaluation, and performance comparison of these deep learning models.

    Citation (Bibtex)

    @TECHREPORT {TechReport-Julia-Laura-HumanVulnerability-2024,
      author   = "Julia Passos Pontes, Laura Maciel Neves Franco, Flavio De Barros Vidal",
      title    = "Detecção de Áreas com Atividades de Vulnerabilidade Humana utilizando Imagens Públicas de Satélites e Aprendizagem Profunda",
      institution = "University of Brasilia",
      year    = "2024",
      type    = "Undergraduate Thesis",
      address   = "Computer Science Department - University of Brasilia - Asa Norte - Brasilia - DF, Brazil",
      month    = "aug",
      note    = "People living in precarious conditions and with their basic needs neglected is an unfortunate reality in Brazil. This scenario will be approached in this work according to the concept of \"human vulnerability\" and can be exemplified through families who live in inadequate shelters, without basic structures and on the streets of urban or rural centers. Therefore, assuming the Federal District as the research scope, this project proposes to develop two new databases to be made available publicly, considering the map scales of 50m and 100m, and composed by satellite images of human vulnerability areas,
    regions treated as traditional and waste disposed inadequately. Furthermore, using these image bases, trainings were done with the YOLOv7 model and other deep learning models for image segmentation. By adopting an exploratory approach, this work compares the results of different image segmentation models and training strategies, using random weight initialization
    (from scratch) and pre-trained weights (transfer learning). Thus, the present work was able to reach maximum F1
    score values of 0.55 for YOLOv7 and 0.64 for other segmentation models."
    }
    

    License

    This project is licensed under the MIT License - see the LICENSE file for details.

  6. a

    1977 Aerial Imagery

    • hub.arcgis.com
    Updated May 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin (2018). 1977 Aerial Imagery [Dataset]. https://hub.arcgis.com/maps/7b738563a82a408a8f959c9a6863f294
    Explore at:
    Dataset updated
    May 21, 2018
    Dataset authored and provided by
    City of Austin
    Area covered
    Description

    This layer is a mosaic dataset of approx 649 individual color scanned aerial photos approx. 9 ½” x 9 ½” in size. Images were captured by International Aerial Mapping Company for the City of Austin between February - March, 1977.

  7. G

    High Resolution Satellite Imagery

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    esri rest, html
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Yukon (2025). High Resolution Satellite Imagery [Dataset]. https://open.canada.ca/data/en/dataset/0a14b357-8a89-6e98-720e-3a800022cb99
    Explore at:
    html, esri restAvailable download formats
    Dataset updated
    Jan 9, 2025
    Dataset provided by
    Government of Yukon
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    This image service contains high resolution satellite imagery for selected regions throughout the Yukon. Imagery is 1m pixel resolution, or better. Imagery was supplied by the Government of Yukon, and the Canadian Department of National Defense. All the imagery in this service is licensed. If you have any questions about Yukon government satellite imagery, please contact Geomatics.Help@gov.yk.can. This service is managed by Geomatics Yukon.

  8. a

    1965 Aerial Imagery

    • hub.arcgis.com
    Updated Jun 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin (2018). 1965 Aerial Imagery [Dataset]. https://hub.arcgis.com/maps/64d014e7fac54eed914b89efa90b03ef
    Explore at:
    Dataset updated
    Jun 4, 2018
    Dataset authored and provided by
    City of Austin
    Area covered
    Description

    This layer is a mosaic dataset of approx 629 individual black and white scanned aerial photos approx. 9 ½” x 9 ½” in size. Images were captured by US Department of Agriculture (USDA) in March 1965.

  9. O

    Queensland Imagery Latest State Program Public Basemap Service

    • data.qld.gov.au
    • researchdata.edu.au
    html, rest, wms, wmts +1
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources and Mines, Manufacturing and Regional and Rural Development (2024). Queensland Imagery Latest State Program Public Basemap Service [Dataset]. https://www.data.qld.gov.au/dataset/queensland-imagery-latest-state-program-public-basemap-service
    Explore at:
    html, xml(1 KiB), rest, wmts, wms(0 bytes)Available download formats
    Dataset updated
    Apr 18, 2024
    Dataset authored and provided by
    Natural Resources and Mines, Manufacturing and Regional and Rural Development
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Queensland
    Description

    A basemap image service that displays the best openly available (latest and highest spatial resolution) authoritative general reference imagery datasets captured by remotely piloted aircraft systems (drones), piloted aircraft, and satellite space craft over areas of Queensland. This basemap service is designed to provide access to the latest publicly available State Remotely Sensed Image Library collection of aerial imagery capture under the Spatial Imagery Services Program (SISP). Aerial imagery that is three years or older captured under SISP is made available for public use openly by the Department of Resources, Queensland. Satellite imagery (Planet Q3 2017 mosaic) is visible in areas over Queensland where aerial photography is unavailable. Basemap services comprise a single layer of static imagery optimised for display purposes. This service has a tile cache built down to a scale of 1:1129. The tile cache can be turned off in client software for viewing at lower scales and printing purposes, and can be used in dynamic mode to filter and display individual project areas. The projects range from 2cm to 240cm resolution. Accuracy is dependent on the individual projects. Periodical updates will be made to the service as new projects are captured. Projects are visible at scales 1:50,000, 1:250,000 and 1:25000000. The images comprised in each of the projects are orthorectified which removes the effects of image perspective (tilt) and relief (terrain) effects for the purpose of creating a planimetrically correct image. The resultant orthorectified images have a constant scale wherein features are represented in their 'true' positions. If you would like to receive updates for new projects, functionality or planned downtime please subscribe here: http://ems.gs/3qln0iYbIYQ.

  10. New Zealand 10m Satellite Imagery (2022-2023)

    • data.linz.govt.nz
    dwg with geojpeg +8
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information New Zealand, New Zealand 10m Satellite Imagery (2022-2023) [Dataset]. https://data.linz.govt.nz/layer/116323-new-zealand-10m-satellite-imagery-2022-2023/
    Explore at:
    jpeg2000 lossless, geojpeg, jpeg2000, kea, geotiff, dwg with geojpeg, pdf, erdas imagine, kmlAvailable download formats
    Dataset authored and provided by
    Land Information New Zealandhttps://www.linz.govt.nz/
    License

    https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset provides a seamless cloud-free 10m resolution satellite imagery layer of the New Zealand mainland and offshore islands.

    The imagery was captured by the European Space Agency Sentinel-2 satellites between September 2022 - April 2023.

    Data comprises: • 450 ortho-rectified RGB GeoTIFF images in NZTM projection, tiled into the LINZ Standard 1:50000 tile layout. • Satellite sensors: ESA Sentinel-2A and Sentinel-2B • Acquisition dates: September 2022 - April 2023 • Spectral resolution: R, G, B • Spatial resolution: 10 meters • Radiometric resolution: 8-bits (downsampled from 12-bits)

    This is a visual product only. The data has been downsampled from 12-bits to 8-bits, and the original values of the images have been modified for visualisation purposes.

    Also available on: • BasemapsNZ Imagery - Registry of Open Data on AWS

  11. d

    CORONA Satellite Photography

    • catalog.data.gov
    • gimi9.com
    • +4more
    Updated Apr 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). CORONA Satellite Photography [Dataset]. https://catalog.data.gov/dataset/corona-satellite-photography
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    On February 24, 1995, President Clinton signed an Executive Order, directing the declassification of intelligence imagery acquired by the first generation of United States photo-reconnaissance satellites, including the systems code-named CORONA, ARGON, and LANYARD. More than 860,000 images of the Earth's surface, collected between 1960 and 1972, were declassified with the issuance of this Executive Order. Image collection was driven, in part, by the need to confirm purported developments in then-Soviet strategic missile capabilities. The images also were used to produce maps and charts for the Department of Defense and for other Federal Government mapping programs. In addition to the images, documents and reports (collateral information) are available, pertaining to frame ephemeris data, orbital ephemeris data, and mission performance. Document availability varies by mission; documentation was not produced for unsuccessful missions.

  12. s

    Aerial Imagery 2007

    • data.sunshinecoast.qld.gov.au
    • hub.arcgis.com
    Updated Apr 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sunshine Coast Council Public Access Hub (2023). Aerial Imagery 2007 [Dataset]. https://data.sunshinecoast.qld.gov.au/datasets/b04f2033c63449859003f827ef2a6076
    Explore at:
    Dataset updated
    Apr 14, 2023
    Dataset authored and provided by
    Sunshine Coast Council Public Access Hub
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Aerial Imagery at 50cm resolution captured over the Sunshine Coast in 2007.From a time series image service that displays authoritative general reference imagery captured by remotely piloted aircraft systems (drones) and piloted aircraft over areas of Queensland. This high resolution ortho photo imagery is over three years old and is made available for public use by the Department of Resources, Queensland.

  13. g

    BareEarthDEM multiYear USFS R3 Southwest multiRes Public

    • gimi9.com
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). BareEarthDEM multiYear USFS R3 Southwest multiRes Public [Dataset]. https://gimi9.com/dataset/data-gov_bareearthdem-multiyear-usfs-r3-southwest-multires-public/
    Explore at:
    Dataset updated
    Jun 1, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data contains an attribute table. Notable attributes that may be of interest to an end-user are:lowps: the pixel size of the source raster, given in meters.highps: the pixel size of the top-most pyramid for the raster, given in meters.beginyear: the first year of data acquisition for an individual dataset.endyear: the final year of data acquisition for an individual dataset.dataset_name: the name of the individual dataset within the collection.metadata: A URL link to a file on IIPP's Portal containing metadata pertaining to an individual dataset within the image service.resolution: The pixel size of the source raster, given in meters.Terrain-related imagery are primarily derived from Lidar, stereoscopic aerial imagery, or Interferometric Synthetic Aperture Radar datasets. Consequently, these derivatives inherit the limitations and uncertainties of the parent sensor and platform and the processing techniques used to produce the imagery. The terrain images are orthographic; they have been georeferenced and displacement due to sensor orientation and topography have been removed, producing data that combines the characteristics of an image with the geometric qualities of a map. The orthographic images show ground features in their proper positions, without the distortion characteristic of unrectified aerial or satellite imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for Earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols whereas on an orthoimage all details appear just as in original aerial or satellite imagery.Tribal lands have been masked from this public service in accordance with Tribal agreements.

  14. G

    Planet SkySat Public Ortho Imagery, Multispectral

    • developers.google.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Planet Labs Inc., Planet SkySat Public Ortho Imagery, Multispectral [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/SKYSAT_GEN-A_PUBLIC_ORTHO_MULTISPECTRAL
    Explore at:
    Dataset provided by
    Planet Labs Inc.
    Time period covered
    Jul 3, 2014 - Dec 24, 2016
    Area covered
    Description

    This data from Planet labs Inc. SkySat satellites was collected for the experimental "Skybox for Good Beta" program in 2015, as well as for various crisis response events and a few other projects. The data is available in both a 5-band Multispectral/Pan collection, and a Pansharpened RGB collection. Each image's …

  15. o

    Data from: Sentinel-2

    • registry.opendata.aws
    Updated Apr 19, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sinergise (2018). Sentinel-2 [Dataset]. https://registry.opendata.aws/sentinel-2/
    Explore at:
    Dataset updated
    Apr 19, 2018
    Dataset provided by
    <a href="https://www.sinergise.com/">Sinergise</a>
    Description

    The Sentinel-2 mission is a land monitoring constellation of two satellites that provide high resolution optical imagery and provide continuity for the current SPOT and Landsat missions. The mission provides a global coverage of the Earth's land surface every 5 days, making the data of great use in on-going studies. L1C data are available from June 2015 globally. L2A data are available from November 2016 over Europe region and globally since January 2017.

  16. DSM MultiYear USFS R3 Southwest multiRes Public

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +3more
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). DSM MultiYear USFS R3 Southwest multiRes Public [Dataset]. https://catalog.data.gov/dataset/dsm-multiyear-usfs-r3-southwest-multires-public
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    This is a collection of Digital Surface Models and Highest Hit rasters covering selected U.S. Forest Service and adjoining lands in the Southwest Region, encompassing Arizona and New Mexico. The data are presented in a time-enabled format, allowing the end-user to view available data year-by-year, or all available years at once, within a GIS system. The data encompass varying years, varying resolutions, and varying geographic extents, dependent upon available data as provided by the region. DSM and Highest Hit rasters represent elevation of Earth's surface, including its natural and human-made features, such as vegetation and buildings.The data contains an attribute table. Notable attributes that may be of interest to an end-user are:lowps: the pixel size of the source raster, given in meters.highps: the pixel size of the top-most pyramid for the raster, given in meters.beginyear: the first year of data acquisition for an individual dataset.endyear: the final year of data acquisition for an individual dataset.dataset_name: the name of the individual dataset within the collection.metadata: A URL link to a file on IIPP's Portal containing metadata pertaining to an individual dataset within the image service.resolution: The pixel size of the source raster, given in meters.Terrain-related imagery are primarily derived from Lidar, stereoscopic aerial imagery, or Interferometric Synthetic Aperture Radar datasets. Consequently, these derivatives inherit the limitations and uncertainties of the parent sensor and platform and the processing techniques used to produce the imagery. The terrain images are orthographic; they have been georeferenced and displacement due to sensor orientation and topography have been removed, producing data that combines the characteristics of an image with the geometric qualities of a map. The orthographic images show ground features in their proper positions, without the distortion characteristic of unrectified aerial or satellite imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for Earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols whereas on an orthoimage all details appear just as in original aerial or satellite imagery.Tribal lands have been masked from this public service in accordance with Tribal agreements.

  17. n

    USGS High Resolution Orthoimagery

    • cmr.earthdata.nasa.gov
    • catalog.data.gov
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). USGS High Resolution Orthoimagery [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567548-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.

    A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.

  18. North Island 0.5m Cyclone Gabrielle Satellite Imagery (2023)

    • data.linz.govt.nz
    • geodata.nz
    dwg with geojpeg +8
    Updated Mar 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information New Zealand (2023). North Island 0.5m Cyclone Gabrielle Satellite Imagery (2023) [Dataset]. https://data.linz.govt.nz/layer/112807-north-island-05m-cyclone-gabrielle-satellite-imagery-2023/
    Explore at:
    jpeg2000, jpeg2000 lossless, geojpeg, erdas imagine, geotiff, kml, kea, pdf, dwg with geojpegAvailable download formats
    Dataset updated
    Mar 26, 2023
    Dataset authored and provided by
    Land Information New Zealandhttps://www.linz.govt.nz/
    License

    https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    A record of the Cyclone Gabrielle severe weather event of February 2023.

    This 0.5m resolution satellite imagery was captured on the 21st February 2023 NZDT and 8th March 2023 NZDT by Chang Guang Satellite Technology Co Ltd and supplied by Critchlow Geospatial.

    Data comprises: • 311 ortho-rectified RGB GeoTIFF images in NZTM projection. • Satellite: JL1KF01B, JL1KF01C • Spatial resolution: 0.5m

    The supplied imagery is in terms of New Zealand Transverse Mercator (NZTM) map projection.

    Additional services: • LINZ Basemaps for WMTS and XYZ services • ArcGIS Online for ArcGIS REST service

    Index tiles for this dataset are available at layer North Island 0.5m Cyclone Gabrielle Satellite Imagery Index Tiles (2023)

  19. g

    DSM MultiYear USFS R3 Southwest multiRes Public

    • gimi9.com
    Updated Nov 3, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2010). DSM MultiYear USFS R3 Southwest multiRes Public [Dataset]. https://gimi9.com/dataset/data-gov_dsm-multiyear-usfs-r3-southwest-multires-public/
    Explore at:
    Dataset updated
    Nov 3, 2010
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data contains an attribute table. Notable attributes that may be of interest to an end-user are:lowps: the pixel size of the source raster, given in meters.highps: the pixel size of the top-most pyramid for the raster, given in meters.beginyear: the first year of data acquisition for an individual dataset.endyear: the final year of data acquisition for an individual dataset.dataset_name: the name of the individual dataset within the collection.metadata: A URL link to a file on IIPP's Portal containing metadata pertaining to an individual dataset within the image service.resolution: The pixel size of the source raster, given in meters.Terrain-related imagery are primarily derived from Lidar, stereoscopic aerial imagery, or Interferometric Synthetic Aperture Radar datasets. Consequently, these derivatives inherit the limitations and uncertainties of the parent sensor and platform and the processing techniques used to produce the imagery. The terrain images are orthographic; they have been georeferenced and displacement due to sensor orientation and topography have been removed, producing data that combines the characteristics of an image with the geometric qualities of a map. The orthographic images show ground features in their proper positions, without the distortion characteristic of unrectified aerial or satellite imagery. Digital orthoimages produced and used within the Forest Service are developed from imagery acquired through various national and regional image acquisition programs. The resulting orthoimages can be directly applied in remote sensing, GIS and mapping applications. They serve a variety of purposes, from interim maps to references for Earth science investigations and analysis. Because of the orthographic property, an orthoimage can be used like a map for measurement of distances, angles, and areas with scale being constant everywhere. Also, they can be used as map layers in GIS or other computer-based manipulation, overlaying, and analysis. An orthoimage differs from a map in a manner of depiction of detail; on a map only selected detail is shown by conventional symbols whereas on an orthoimage all details appear just as in original aerial or satellite imagery.Tribal lands have been masked from this public service in accordance with Tribal agreements.

  20. Copyright images from Digital Globe WorldView satellite

    • catalog.data.gov
    Updated Jan 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). Copyright images from Digital Globe WorldView satellite [Dataset]. https://catalog.data.gov/dataset/copyright-images-from-digital-globe-worldview-satellite
    Explore at:
    Dataset updated
    Jan 24, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Copyright images from Digital Globe WorldView satellite. This dataset is not publicly accessible because: Copyright images from Digital Globe WorldView satellite. It can be accessed through the following means: Copyright images from Digital Globe WorldView satellite. Format: Copyright images from Digital Globe WorldView satellite. This dataset is associated with the following publication: Aminul Islam, K., V. Hill, B. Schaeffer, R. Zimmerman, and J. Li. Semi-supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas. Data Science and Engineering. Springer Nature Group, New York, NY, 5: 111–125, (2020).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
DOI/USGS/EROS (2025). Declassified Satellite Imagery 2 (2002) [Dataset]. https://catalog.data.gov/dataset/declassified-satellite-imagery-2-2002

Declassified Satellite Imagery 2 (2002)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 10, 2025
Dataset provided by
DOI/USGS/EROS
Description

Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.

Search
Clear search
Close search
Google apps
Main menu