Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
This hosted feature layer has been published in RI State Plane Feet NAD 83 This is a statewide, seamless digital dataset of the land cover/land use for the State of Rhode Island derived using automated and semi-automated methods and is based on orthophotography captured in spring 2011. The project area encompasses the State of Rhode Island and also extends 1/2 mile into the neighboring states of Connecticut and Massachusetts, or to the limits of the source orthophotography. Geographic feature accuracy meets the National Mapping Standards for 1:5000 scale mapping with respect to base level data (roads, hydrography, and orthos). The minimum mapping unit for this dataset is 0.5 acre.The land use classification scheme used for these data was based on the same Anderson Level III modified coding schema used in previous land use datasets in Rhode Island (1988 & 2003/2004). To provide a statewide dataset representing land cover/land use. The dataset is also intended to be incorporated into the Rhode Island Geographic Information System database for use by federal, state and local government and made available to the general public. The intention of this dataset is to serve as an update to the 2003/2004 land cover/land use dataset. Geography for the dataset was based on ground conditions of 2011 four-band orthophotography with a spatial resolution of 0.5 ft and 2011 LiDAR data and data derivatives with a nominal post spacing of 1m. Additional ancillary data used in the production of this dataset were provided by the State of Rhode Island and included 2003/2004 land cover/land use, road centerline, hydrography, railroads, state boundary, municipal boundary, coastline, location of schools, hospitals, governmental facilities, waste disposal sites, etc. Landuse / Landcover for RI is based upon Anderson Level 3 coding described in the United States Geological Survey Publication: "A Land Use And Land Cover Classification System for Use With Remote Sensor Data, Geological Survey Professional Paper 964" Available Online at: https://landcover.usgs.gov/pdf/anderson.pdf.
The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011, and 2016. The 2016 release saw landcover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019. The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.These data have been made publicly available from an authoritative source other than this Atlas and data should be obtained directly from that source for any re-use. See the original metadata from the authoritative source for more information about these data and use limitations. The authoritative source of these data can be found at the following location: Data | Multi-Resolution Land Characteristics (MRLC) ConsortiumSee https://www.mrlc.gov/data for the full list of products available.
https://www.imf.org/external/terms.htmhttps://www.imf.org/external/terms.htm
Annual estimates of land cover and Climate Altering Land Cover Index are presented at country and regional levels for the years, 1992-2020. Estimates of land cover are presented in thousand hectares and the Climate Altering Land Cover Index is unitless.Sources: Food and Agriculture Organization of the United Nations (FAO). 2020. FAOSTAT Land, Inputs and sustainability, Land, Land Cover. License: CC BY-NC-SA 3.0 IGO. Extracted from: https://www.fao.org/faostat/en/#data/LC; IMF staff calculations.Category: Climate and WeatherData series: Climate Altering Land Cover Index (Source: IMF staff calculations)Artificial surfaces (including urban and associated areas) (Source: FAO)Grassland (Source: FAO)Herbaceous crops (Source: FAO)Inland water bodies (Source: FAO)Mangroves (Source: FAO)Permanent snow and glaciers (Source: FAO)Shrub-covered areas (Source: FAO)Shrubs and/or herbaceous vegetation, aquatic or regularly flooded (Source: FAO)Sparsely natural vegetated areas (Source: FAO)Terrestrial barren land (Source: FAO)Tree-covered areas (Source: FAO)Woody crops (Source: FAO)Metadata:The FAOSTAT Land Cover domain contains statistics of land cover area, aggregated at national level and by land cover category following the international land cover classification of the United Nations System of Environmental-Economic Accounting Central Framework (UN SEEA 2012). The FAOSTAT land cover data are compiled by national aggregation of geospatial information which is distributed via publicly available Global Land Cover mapping products.Methodology:The Land Cover accounts are derived from publicly available Global Land Cover maps (GLC). The methodology adopted by FAO for the compilation of land cover datasets can be seen at https://fenixservices.fao.org/faostat/static/documents/LC/LC_e_2021.pdfLand cover has important linkages to climate regulation and climate change and therefore can be used to construct climate change indicators. One simple way to present the influence land cover can have on the climate is by assigning each land cover class as either climate regulating, climate altering, or climate neutral. Classification of land cover according to the effect that they are likely to have on the climate is shown below:1. Climate altering land cover: Artificial surfaces (including urban and associated areas); Herbaceous crops2. Climate regulating land cover: Woody crops; Multiple or layered crops; Grasslands; Tree-covered areas; Mangroves; Shrub-covered areas; Shrubs and/or herbaceous vegetation, aquatic or regularly flooded; Permanent snow and glaciers; Inland water bodies; Coastal water bodies and intertidal areas3. Climate neutral: Sparsely natural vegetated areas; Terrestrial barren land.Using the above information, a climate altering land cover index (CALCI) was compiled. The Climate Altering Land Cover Index (CALCI) reflects the changes in the share of climate altering land cover as compared to the base year, 2015. The year 2015 was selected as the base for the index since all countries reported land cover data for that year. CALCI aggregates are calculated by region and sub-region according to the M49 and the World Economic Outlook Classifications.Disclaimer:Users are encouraged to examine the documentation, metadata, and sources associated with the data. User feedback on the fit-for-use of this product and whether the various dimensions of the product are appropriate is welcome.
A generalized dataset of existing land use in the District of Columbia as existed during its most recent extract of the common ownership lots. This dataset is different from the Comprehensive Plan - Future Land Use, which shows land use as envisioned in the latest version of DC’s Comprehensive Plan. The primary land use categories used in this dataset are similar, but not identical. The Office of the Chief Technology Officer (OCTO) compared two datasets to create this generalized existing land use data. The data source identifying property use is the Property Use Code Lookup from the Office of Tax and Revenue (OTR). An index provided by the Office of Planning assigns each OTR property use code with a “primary land use” designation. Through an automated process, the common ownership lots were then joined with this index to create the Existing Land Use. Only properties with an assigned use code from OTR are categorized. Other properties without a use code were left as NULL. Many of these tend to be public lands such as national parks. Refer to https://opendata.dc.gov/pages/public-lands.This dataset has no legal status and is intended primarily as a resource and informational tool. The Office of the Chief Technology Officer anticipates replicating this work annually.
Two datasets provide geographic, land use and population data for US Counties within the contiguous US. Land area, water area, cropland area, farmland area, pastureland area and idle cropland area are given along with latitude and longitude of the county centroid and the county population. Variables in this dataset come from the US Dept. of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and the US Census Bureau.
EOS-WEBSTER provides seven datasets which provide county-level data on agricultural management, crop production, livestock, soil properties, geography and population. These datasets were assembled during the mid-1990's to provide driving variables for an assessment of greenhouse gas production from US agriculture using the DNDC agro-ecosystem model [see, for example, Li et al. (1992), J. Geophys. Res., 97:9759-9776; Li et al. (1996) Global Biogeochem. Cycles, 10:297-306]. The data (except nitrogen fertilizer use) were all derived from publicly available, national databases. Each dataset has a separate DIF.
The US County data has been divided into seven datasets.
US County Data Datasets:
1) Agricultural Management 2) Crop Data (NASS Crop data) 3) Crop Summary (NASS Crop data) 4) Geography and Population 5) Land Use 6) Livestock Populations 7) Soil Properties
ERS has been a source of major land use estimates in the United States for over 50 years, and the related U.S. cropland used for crops series dates back to 1910. The Major Land Uses (MLU) series is the longest running, most comprehensive accounting of all major uses of public and private land in the United States. The series was started in 1945, and has since been published about every 5 years, coinciding with the Census of Agriculture. See the latest report in the series, Major Uses of Land in the United States, 2007. Data from all 14 Major Land Uses reports have been combined into a set of files showing major land use estimates by region and State from 1945 to 2007. Alaska and Hawaii were added in 1959, when they achieved Statehood. Since Alaska contains such vast acreage, 50-State totals in all categories prior to 1959 may appear to change precipitously.
This hosted feature layer has been published in RI State Plane Feet NAD 83.The Land Use 2025 dataset was developed for the Division of Planning, RI Statewide Planning Program as part of an update to a state land use plan. It evolved from a GIS overlay analysis of land suitability and availability and scenario planning for future growth. The analysis focused on the 37% of the State identified as undeveloped and unprotected in a land cover analysis from RIGIS 1995 land use land cover data. The project studied areas for suitability for conservation and development, based on the location of key natural resources and public infrastructure. The results identified areas with future use potential, under three categories of development intensity and two categories of conservation.These data are presented in the Plan as Figure 121-02-(01), Future Land Use Map. Land Use 2025: State Land Use Policies and Plan was published by the RI Statewide Planning Program on April 13, 2006. The intent of the Plan is to bring together the elements of the State Guide Plan such as natural resources, economic development, housing and transportation to guide conservation and land development in the State. The Plan directs the state and communities to concentrate growth inside the Urban Services Boundary (USB) and within potential growth centers in rural areas. It establishes different development approaches for urban and rural areas.These data have several purposes and applications: They are intended to be used as a policy guide for directing growth to areas most capable of supporting current and future developed uses and to direct growth away from areas less suited for development. Secondly, these data are a guide to assist the state and communities in making land use policies. It is important to note these data are a generalized portrayal of state land use policy. These are not a statewide zoning data. Zoning matters and individual land use decisions are the prerogative of local governments. The land use element is the over arching element in Rhode Island's State Guide Plan. The Plan articulates goals, objectives and strategies to guide the current and future land use planning of municipalities and state agencies. The purpose of the plan is to guide future land use and to present policies under which state and municipal plans and land use activities will be reviewed for consistency with the State Guide Plan. The Map is a graphical representation of recommendations for future growth patterns in the State. It depicts where different intensities of development (e.g. parks, urban development, non-urban development) should occur by color. The Map contains a USB that shows where areas with public services supporting urban development presently exist, or are likely to be provided, through 2025. Within the USB, most land is served by public water service; many areas also have public sewer service, as well as, public transit. Also included on the map are growth centers which are potential areas for development and redevelopment outside of the USB. Growth Centers are envisioned to be areas that will encourage development that is both contiguous to existing development with low fiscal and environmental impacts.NOTE: These data will be updated when the associated plan is updated or upon an amendment approved by the State Planning Council. NOTE: Wetlands were not categorized within the Land Use 2025 dataset.When using this dataset, the RIGIS wetlands dataset should be overlaid as a mask. Full descriptions of the categories and intended uses can be found within Section 2-4, Future Land Use Patterns, Categories, and Intended Uses, of the Plan. https://www.planning.ri.gov/documents/guide_plan/landuse2025.pdf
High resolution land cover dataset for City of Boston, MA. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The primary sources used to derive this land cover layer were 2013 LiDAR data, 2014 Orthoimagery, and 2016 NAIP imagery. Ancillary data sources included GIS data provided by City of Boston, MA or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2500 and all observable errors were corrected.
High resolution land cover dataset for City of Boston, MA. Seven land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, and (7) other paved surfaces. The primary sources used to derive this land cover layer were 2013 LiDAR data, 2014 Orthoimagery, and 2016 NAIP imagery. Ancillary data sources included GIS data provided by City of Boston, MA or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2500 and all observable errors were corrected.
Credits: University of Vermont Spatial Analysis Laboratory in collaboration with the City of Boston, Trust for Public Lands, and City of Cambridge.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover global archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (22 classes worldwide). The database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -Perimeter (m) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend table (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based global archive, Globcover. Globcover database has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (24 classes globally); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover regional (Africa) archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (46 classes). This database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend tables (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based Globcover database (regional version). Globcover has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (46 classes); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
The Multi-Resolution Land Characteristics (MRLC) project was established to provide multi-resolution land cover data of the conterminous United States from local to regional scales. A major component of MRLC is an objective to develop a national 30-meter land cover characteristics data base using Landsat thematic mapper (TM) data. This is a cooperative effort among six programs within four U.S. Government agencies, including the U.S. Environmental Protection Agency's (EPA) Environmental Monitoring and Assessment Program; the U.S. Geological Survey's (USGS) National Water Quality Assessment Program; the National Biological Service's Gap Analysis Program; the USGS' Earth Resources Observation Systems (EROS) Center; the National Oceanic and Atmospheric Administration's Coastal Change Analysis Program; and the EPA's North American Landscape Characterization project.
Multitemporal scenes were selected for the eastern deciduous forests, agricultural regions, and selected other regions. Multitemporal pairs were selected to be in consecutive seasons (in 1992 when possible). All scenes were previewed for image quality.
The participating agencies organized the joint purchase of a single national set of Landsat TM scenes. In addition, the cooperators developed a common definition for preprocessing the satellite data. The shared, consistently processed TM data are the foundation for the development of the national 30-meter land cover data base. The jointly acquired data are archived and distributed by EROS. A variety of products are available to MRLC participants, to their affiliated users, and to the general public.
Multi-Resolution Land Characterization 2001 (MRLC 2001) At-Sensor Reflectance Dataset is a second-generation federal consortium to create an updated pool of nation-wide Landsat imagery, and derive a second-generation National Land Cover Database (NLCD 2001).
The MRLC 2001 data cover the United States, including Alaska and Hawaii. Multi-temporal scenes may also be available, depending on the location. Most of the images are of high quality, and cloud cover is generally less than ten percent. The data will also include a 30-meter Digital Elevation Model (DEM) for all scenes that do not include the Canadian or Mexican borders.
This EnviroAtlas dataset describes the percentage of each block group that is classified as impervious, forest, green space, agriculture, and wetlands. In this community, forest is defined as Trees and Forest and Woody Wetlands.and green space is defined as Trees and Forest, Grass and Herbaceous, Agriculture, Woody Wetlands, and Emergent Wetlands. Wetlands are defined as Woody Wetlands and Emergent Wetlands. This dataset also includes the area per capita for each block group for some land cover types. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
The EnviroAtlas Phoenix, AZ Meter-Scale Urban Land Cover (MULC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green, blue and near-infrared) aerial photography taken from June through September, 2010 at 1 m spatial resolution. Seven land cover classes were mapped: water, impervious surfaces, soil and barren land, trees and forest, shrubs, grass and herbaceous non-woody vegetation, and agriculture. An accuracy assessment using a completely random sampling of 598 land cover reference points yielded an overall user's accuracy (MAX) of 69.2% and an overall fuzzy user's accuracy of 75.4%. The area mapped includes the entirety of the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area, which was classified by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University. The land cover dataset also includes an area of approximately 625 square kilometers which is located north of Phoenix. This section was classified by the EPA land cover classification team. This dataset was produced by the Environmental Remote Sensing and Geoinformatics Lab (ERSG) at Arizona State University and the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
The database shall be made publicly available on the Agency’s website in the form of a GIS browser. The data can be obtained on request (by filling in the Request for Access to Information AZO, according to the Information Catalogue of the AZO) and is provided on a CD/DVD medium (.shp file) and via the WMS/WFS GIS web service. CLC Croatia presents a digital database on the state and changes of the land cover of the Republic of Croatia for the period 1980. 2012 according to the CORINE nomenclature, which ensures consistency and uniformity with data across the European Union. The base contains: CLC 2012 — base representing the land cover for reference year 2012; CLC 2006 — base representing the land cover for reference year 2006; CLC 2000 — base representing the land cover for the reference year 2000; CLC 1990 — a base representing the land cover for 1990, resulting from the merger of the change base and the land cover base of the reference year 2000; CLC 1980 — a base representing the land cover for 1980, resulting from the merger of the change base and the land cover base of the reference year 2000; CLC Change 2006-2012 — a database containing changes in land cover between 2006 and 2012; CLC Change 2000-2006 — a database containing changes in land cover between 2000 and 2006; CLC Change 1990-2000 — a database containing changes in land cover between 1990 and 2000; CLC Changes 1980-2000 — a database containing changes in land cover between 1980 and 2000; CLC Changes 1980-1990 — a database containing changes in land cover between 1980 and 1990. Legal basis: National Environmental Strategy (NN 46/02), National Environmental Action Plan (NN 46/02). The database contains data on the land cover of the Republic of Croatia. Corine Land Cover 2012 consists of 22 676 polygons classified in 39 classes according to the standard CORINE nomenclature. Targeted beneficiaries: Ministries, state administration bodies, faculties, environmental NGOs, professional and general public.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hcropland30:A 30-m global cropland map by leveraging global land cover products and Landsat data based on a deep learning model
***Please note this dataset is undergoing peer review***
Version: 1.0
Authors: Qiong Hu a, 1, Zhiwen Cai b, 1, Liangzhi You c, d, Steffen Fritz e, Xinyu Zhang c, He Yin f, Haodong Weic, Jingya Yang g, Zexuan Li a, Qiangyi Yu g, Hao Wu a, Baodong Xu b *, Wenbin Wu g, *
a Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province/College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
b College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
c Macro Agriculture Research Institute, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
d International Food Policy Research Institute, 1201 I Street, NW, Washington, DC 20005, USA
e Novel Data Ecosystems for sustainability Research Group, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg A-2361, Austria
f Department of Geography, Kent State University, 325 S. Lincoln Street, Kent, OH 44242, USA
g State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Introduction
We are pleased to introduce a comprehensive global cropland mapping dataset (named Hcropland30) in 2020, meticulously curated to support a wide range of research and analysis applications related to agricultural land and environmental assessment. This dataset encompasses the entire globe, divided into 16,284 grids, each measuring an area of 1°×1°. Hcropland30 was produced by leveraging global land cover products and Landsat data based on a deep learning model. Initially, we established a hierarchal sampling strategy that used the simulated annealing method to identify the representative 1°×1° grids globally and the sparse point-level samples within these selected 1°×1°grids. Subsequently, we employed an ensemble learning technique to expand these sparse point-level samples into the densely pixel-wise labels, creating the area-level 1°×1° cropland labels. These area-level labels were then used to train a U-Net model for predicting global cropland distribution, followed by a comprehensive evaluation of the mapping accuracy.
Dataset
1. Hcropland30: A hybrid 30-m global cropland map in 2020
****Data format: GeoTiff
****Spatial resolution: 30 m
****Projection: EPSG: 4326 (WGS84)
****Values: 1 denotes cropland and 0 denotes non-cropland
The dataset has been uploaded in 16,284 tiles. The extent of each tile can be found in the file of “Grids.shp”. Each file is named according to the grid’s Id number. For example, “000015.tif” corresponds to the cropland mapping result for the 15-th 1°×1° grid. This systematic naming convention ensures easy identification and retrieval of the specific grid data.
2. 1°×1° Grids: This file contains all 16,284 1°×1° grids used in the dataset. The vector file includes 18 attribute fields, providing comprehensive metadata for each grid. These attributes are essential for users who need detailed information about each grid’s characteristics.
****Data format: ESRI shapefile
****Projection: EPSG: 4326 (WGS84)
****Attribute Fields:
Id: The grid’s ID number.
area: The area of the grid.
mode: Indicates the representative sample grid.
climate: The climate type the grid belongs to.
dem: Average DEM value of the grid.
ndvi_s1 to ndvi_s4: Average NDVI values for four seasons within the grid.
esa, esri, fcs30, fromglc, glad, globeland30: Proportion of cropland pixels of different publicly available cropland products.
inconsistent: Proportion of inconsistent pixels within the grid according to different public cropland products.
hcropland30: Proportion of cropland pixels of our Hcropland30 dataset.
3. Samples: The selected representative pixel-level samples, including 32,343 cropland and 67657 non-cropland samples. The category information of each sample was determined based on visual interpretation on Google Earth image and three-year NDVI time series curves from 2019-2021.
****Data format: ESRI shapefile
****Projection: EPSG: 4326 (WGS84)
****Attribute Fields:
type: 1 denotes cropland sample and 0 denotes non-cropland sample.
Citation
If you use this dataset, please cite the following paper:
Hu, Q., Cai, Z., You, L., Fritz, S., Zhang, X., Yin, H., Wei, H., Yang, J., Li, Z., Yu, Q., Wu, H., Xu, B., Wu, W. (2024). Hcropland30: A 30-m global cropland map by leveraging global land cover products and Landsat data based on a deep learning model, Remote Sensing of Environment, submitted.
License
The data is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
Disclaimer
This dataset is provided as-is, without any warranty, express or implied. The dataset author is not
responsible for any errors or omissions in the data, or for any consequences arising from the use
of the data.
Contact
If you have any questions or feedback regarding the dataset, please contact the dataset author
Qiong Hu (huqiong@ccnu.edu.cn)
The FAOSTAT domain Land Cover under the Agri-Environmental Indicators section contains land cover information organized by the land cover classes of the international standard system for Environmental and Economic Accounting Central Framework (SEEA CF). The land cover information is compiled from publicly available Global Land Cover (GLC) maps: a) MODIS land cover types based on the Land Cover Classification System, LCCS (2001–2021); b) The European Spatial Agency (ESA) Climate Change Initiative (CCI) annual land cover maps (1992–2020) produced by the Université catholique de Louvain (UCL)-Geomatics and now under the European Copernicus Program; c) The annual land cover maps which were produced under the European Copernicus Global Land Service (CGLS) (CGLS land cover, containing discrete land cover categorization for the period 2015–2019), with spatial resolution 100m; and d) 4) The WorldCover maps of the European Space Agency —available for the years 2020 and 2021, produced at 10m resolution.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Couverture du sol La couverture du sol est une description physique de l’espace – l’occupation (bio)physique observée de la surface terrestre, c’est-à-dire ce qui recouvre le sol
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This land cover data set is derived from the original raster based Globcover global archive. It has been post-processed to generate a vector version at national extent with the LCCS regional legend (22 classes worldwide). The database can be analyzed in the GLCN software Advanced Database Gateway (ADG), which provides a user-friendly interface and advanced functionalities to breakdown the LCCS classes in their classifiers for further aggregations and analysis.
The data set is intended for free public access.
The shape file's attributes contain the following fields: -Area (sqm) -Perimeter (m) -ID -Gridcode (Globcover cell value) -LCCCode (unique LCCS code)
You can download a zip archive containing: -the shape file (.shp) -the ArcGis layer file with global legend (.lyr) -the ArcView 3 legend file (.avl) -the LCCS legend table (.xls)
Supplemental Information:
This land cover product is a vector version (ESRI shape) of the Globcover archive that was published in 2008 as result of an initiative launched in 2004 by the European Space Agency (ESA). Globcover is currently the most recent (2005) and resoluted (300 m) datasets on land cover globally. Given the need of this valuable information for environmental studies, natural resources management and policy formulation, through activities of the Global Land Cover Network (GLCN) programme, the Globcover has been reprocessed to generate databases at national extent that can be analyzed through the Advanced Database Gateway software (ADG) by GLCN. ADG is a cross-cutting interrogation software that allows the easy and fast recombination of land cover polygons according to the individual end-user requirements. Aggregated land cover classes can be generated not only by name, but also using the set of existing classifiers. ADG uses land cover data with a Land Cover Classification System (LCCS) legend. The ADG software is available for download on the GLCN web site at http://www.glcn.org/sof_7_en.jsp
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Antonio Martucci
Data lineage:
This land cover database is provided as ESRI shape file (vector format) and derives from reprocessing the raster based global archive, Globcover. Globcover database has undergone the following process: a) vectoralization at the national extent using ESRI ArcGis (arcinfo) 9.3; b) topological reconstruction (custom AML scripts launched inside ArcGis-arcinfo 9.3); c) simplification of areas according to a minimum mapping unit of 0.1 skim (10 ha) (custom AML scripts launched inside ArcGis-arcinfo 9.3); application of the FAO/UNEP Land Cover Classification System (LCCS) legend (24 classes globally); final processing to assure full compatibility with the GLCN software Advanced Database Gateway (ADG).
Online resources:
Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or