19 datasets found
  1. P

    Puerto Rico Total Covid cases, end of month, March, 2023 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC, Puerto Rico Total Covid cases, end of month, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Puerto-Rico/covid_total_cases/
    Explore at:
    csv, excel, xmlAvailable download formats
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2020 - Mar 31, 2023
    Area covered
    Puerto Rico
    Description

    Total Covid cases, end of month in Puerto Rico, March, 2023 The most recent value is 1107686 total Covid cases as of March 2023, an increase compared to the previous value of 1097748 total Covid cases. Historically, the average for Puerto Rico from March 2020 to March 2023 is 393814 total Covid cases. The minimum of 342 total Covid cases was recorded in March 2020, while the maximum of 1107686 total Covid cases was reached in March 2023. | TheGlobalEconomy.com

  2. T

    Puerto Rico Coronavirus COVID-19 Cases

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Puerto Rico Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/puerto-rico/coronavirus-cases
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Mar 26, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    Puerto Rico
    Description

    Puerto Rico recorded 1119959 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, Puerto Rico reported 2 Coronavirus Deaths. This dataset includes a chart with historical data for Puerto Rico Coronavirus Cases.

  3. P

    Puerto Rico New Covid cases per month, March, 2023 - data, chart |...

    • theglobaleconomy.com
    csv, excel, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC, Puerto Rico New Covid cases per month, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Puerto-Rico/covid_new_cases/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 2020 - Mar 31, 2023
    Area covered
    Puerto Rico
    Description

    New Covid cases per month in Puerto Rico, March, 2023 The most recent value is 9938 new Covid cases as of March 2023, a decline compared to the previous value of 14631 new Covid cases. Historically, the average for Puerto Rico from February 2020 to March 2023 is 29150 new Covid cases. The minimum of 0 new Covid cases was recorded in February 2020, while the maximum of 170906 new Covid cases was reached in January 2022. | TheGlobalEconomy.com

  4. z

    Counts of COVID-19 reported in PUERTO RICO: 2020-2021

    • zenodo.org
    • catalog.midasnetwork.us
    • +2more
    json, xml, zip
    Updated Jun 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center; MIDAS Coordination Center (2024). Counts of COVID-19 reported in PUERTO RICO: 2020-2021 [Dataset]. http://doi.org/10.25337/t7/ptycho.v2.0/pr.840539006
    Explore at:
    json, xml, zipAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    Project Tycho
    Authors
    MIDAS Coordination Center; MIDAS Coordination Center
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 2020 - Jul 31, 2021
    Area covered
    Puerto Rico
    Description

    Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team, except for aggregation of individual case count data into daily counts when that was the best data available for a disease and location. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format. All geographic locations at the country and admin1 level have been represented at the same geographic level as in the data source, provided an ISO code or codes could be identified, unless the data source specifies that the location is listed at an inaccurate geographical level. For more information about decisions made by the curation team, recommended data processing steps, and the data sources used, please see the README that is included in the dataset download ZIP file.

  5. f

    Demographic characteristics of confirmed COVID-19 cases and deaths by age...

    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miguel Valencia; José E. Becerra; Juan C. Reyes; Kenneth G. Castro (2023). Demographic characteristics of confirmed COVID-19 cases and deaths by age and gender. [Dataset]. http://doi.org/10.1371/journal.pone.0240013.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Miguel Valencia; José E. Becerra; Juan C. Reyes; Kenneth G. Castro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographic characteristics of confirmed COVID-19 cases and deaths by age and gender.

  6. f

    Data_Sheet_1_Estimating COVID-19 cases in Puerto Rico using an automated...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marijulie Martinez-Lozano; Rajendra Gadhavi; Christian Vega; Karen G. Martinez; Waldo Acevedo; Kaumudi Joshipura (2023). Data_Sheet_1_Estimating COVID-19 cases in Puerto Rico using an automated surveillance system.DOCX [Dataset]. http://doi.org/10.3389/fpubh.2022.947224.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Marijulie Martinez-Lozano; Rajendra Gadhavi; Christian Vega; Karen G. Martinez; Waldo Acevedo; Kaumudi Joshipura
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Puerto Rico
    Description

    Due to concerns regarding limited testing and accuracy of estimation of COVID-19 cases, we created an automated surveillance system called “Puerto Rico Epidemiological Evaluation and Prevention of COVID-19 and Influenza” (PREPCOVI) to evaluate COVID-19 incidence and time trends across Puerto Rico. Automated text message invitations were sent to random phone numbers with Puerto Rican area codes. In addition to reported COVID-19 test results, we used a published model to classify cases from specific symptoms (loss of smell and taste, severe persistent cough, severe fatigue, and skipped meals). Between 18 November 2020, and 24 June 2021, we sent 1,427,241 messages, 26.8% were reached, and 6,975 participants answered questions about the last 30 days. Participants were aged 21–93 years and represented 97.4% of the municipalities. PREPCOVI total COVID-19 cases were higher among women and people aged between 21 and 40 years and in the Arecibo and Bayamón regions. COVID-19 was confirmed, and probable cases decreased over the study period. Confirmed COVID-19 cases ranged from 1.6 to 0.2% monthly, although testing rates only ranged from 30 to 42%. Test positivity decreased from 13.2% in November to 6.4% in March, increased in April (11.1%), and decreased in June (1.5%). PREPCOVI total cases (6.5%) were higher than cases reported by the Puerto Rico Department of Health (5.3%) for similar time periods, but time trends were similar. Automated surveillance systems and symptom-based models are useful in estimating COVID-19 cases and time trends, especially when testing is limited.

  7. Weekly COVID-19 County Level of Community Transmission as Originally Posted...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated May 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2024). Weekly COVID-19 County Level of Community Transmission as Originally Posted - ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Weekly-COVID-19-County-Level-of-Community-Transmis/dt66-w6m6
    Explore at:
    csv, application/rdfxml, tsv, application/rssxml, xml, jsonAvailable download formats
    Dataset updated
    May 8, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    Weekly COVID-19 Community Levels (CCLs) have been replaced with levels of COVID-19 hospital admission rates (low, medium, or high) which demonstrate >99% concordance by county during February 2022–March 2023. For more information on the latest COVID-19 status levels in your area and hospital admission rates, visit United States COVID-19 Hospitalizations, Deaths, and Emergency Visits by Geographic Area.

    This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.

    This archived public use dataset contains weekly community transmission levels data for all available counties and jurisdictions since October 20, 2022. The dataset was appended to contain the most recent week's data as originally posted on COVID Data Tracker. Historical corrections are not made to these data if new case or testing information become available. A separate archived file is made available here (: Weekly COVID-19 County Level of Community Transmission Historical Changes) if historically updated data are desired.

    Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Weekly Originally Posted dataset), updated weekly with the most recent week’s data since October 20, 2022, and a historical dataset with the county-level transmission data from January 22, 2020 (Weekly Historical Changes dataset).

    Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.

    CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).

    Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).

    If the two metrics suggest different transmission levels, the higher level is selected.

    The reported transmission categories include:

    Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%;

    Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%;

    Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%;

    High Transmission Threshold: Counties with 100 or more total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 10.0% or greater.

    Blank: total new cases in the past 7 days are not reported (county data known to be unavailable) and the percentage of positive NAATs tests during the past 7 days (blank) are not reported.

    The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers.

    This dataset is created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.

    Archived data CDC has archived two prior versions of these datasets. Both versions contain the same 7 data elements reflecting community transmission levels for all available counties and jurisdictions; however, the datasets were updated daily. The archived datasets can be found here:

    Archived Originally Posted dataset

    Archived Historical Changes dataset

    Archived Data Notes:

    October 20, 2022: Due to the Mississippi case data dashboard not being updated this week, case rates for all Mississippi counties are reported as 0 in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Levels metrics for Mississippi counties being underestimated; therefore, they should be interpreted with caution.

    October 20, 2022: Due to a data reporting error, the case rate for Philadelphia County, Pennsylvania is lower than expected in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Level for Philadelphia County being underestimated; therefore, it should be interpreted with caution.

    October 28, 2022: Due to a data processing error, case rates for Kentucky appear higher than expected in the weekly release on October 28, 2022. Therefore, the COVID-19 Community Transmission Levels metrics for Kentucky counties may be overestimated and should be interpreted with caution.

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 3, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Missouri counties being overestimated; therefore, they should be interpreted with caution.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 10, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Alabama counties being overestimated; therefore, they should be interpreted with caution.

    November 10, 2022: Per the request of the jurisdiction, cases among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases. 

    November 10, 2022: Due to a reporting cadence issue, case rates for all Mississippi counties are reported as 0 in the COVID-19 Community Transmission data released on November 10, 2022. This could lead to the COVID-19 Community Transmission Levels metrics for Mississippi counties being underestimated; therefore, they should be interpreted with caution. 

    November 10, 2022: In the COVID-19 Community Transmission Level data released on November 10, 2022, multiple municipalities in Puerto Rico are reporting higher than expected increases in case counts. CDC is working with territory officials to verify the data submitted. 

    November 25, 2022: Due to a reporting cadence change for the Thanksgiving holiday, case rates for all Ohio counties are calculated based on 13 days' worth of case counts in the COVID-19 Community Transmission Level data released on November 25, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for all Ohio counties being overestimated; therefore, they should be interpreted with caution.

    November 25, 2022: Due to the Thanksgiving holiday, CDC did not receive updated case data from the following jurisdictions: Rhode Island and Mississippi. As a result, case rates for all counties within these jurisdictions are reported as 0 in the COVID-19 Community Transmission Level Data

  8. P

    Puerto Rico Total Covid cases per million people, March, 2023 - data, chart...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2023). Puerto Rico Total Covid cases per million people, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Puerto-Rico/covid_cases_per_million/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Mar 15, 2023
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 2020 - Mar 31, 2023
    Area covered
    Puerto Rico
    Description

    Total Covid cases per million people in Puerto Rico, March, 2023 The most recent value is 340574 cases per million as of March 2023, an increase compared to the previous value of 337518 cases per million. Historically, the average for Puerto Rico from March 2020 to March 2023 is 121084 cases per million. The minimum of 105 cases per million was recorded in March 2020, while the maximum of 340574 cases per million was reached in March 2023. | TheGlobalEconomy.com

  9. Comprehensive COVID-19 State Data

    • kaggle.com
    Updated Sep 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cameron Gould (2021). Comprehensive COVID-19 State Data [Dataset]. https://www.kaggle.com/datasets/camerongould/comprehensive-covid19-state-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 24, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Cameron Gould
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    After observing many naive conversations about COVID-19, claiming that the pandemic can be blamed on just a few factors, I decided to create a data set, to map a number of different data points to every U.S. state (including D.C. and Puerto Rico).

    Content

    This data set contains basic COVID-19 information about each state, such as total population, total COVID-19 cases, cases per capita, COVID-19 deaths and death rate, Mask mandate start, and end dates, mask mandate duration (in days), and vaccination rates.

    However, when evaluating a pandemic (specifically a respiratory virus) it would be wise to also explore the population density of each state, which is also included. For those interested, I also included political party affiliation for each state ("D" for Democrat, "R" for Republican, and "I" for Puerto Rico). Vaccination rates are split into 1-dose and 2-dose rates.

    Also included is data ranking the Well-Being Index and Social Determinantes of Health Index for each state (2019). There are also several other columns that "rank" states, such as ranking total cases per state (ascending), total cases per capita per state (ascending), population density rank (ascending), and 2-dose vaccine rate rank (ascending). There are also columns that compare deviation between columns: case count rank vs population density rank (negative numbers indicate that a state has more COVID-19 cases, despite being lower in population density, while positive numbers indicate the opposite), as well as per-capita case count vs density.

    Acknowledgements

    Several Statista Sources: * COVID-19 Cases in the US * Population Density of US States * COVID-19 Cases in the US per-capita * COVID-19 Vaccination Rates by State

    Other sources I'd like to acknowledge: * Ballotpedia * DC Policy Center * Sharecare Well-Being Index * USA Facts * World Population Overview

    Inspiration

    I would like to see if any new insights could be made about this pandemic, where states failed, or if these case numbers are 100% expected for each state.

  10. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.cdc.gov/Case-Surveillance/Weekly-United-States-COVID-19-Cases-and-Deaths-by-/pwn4-m3yp
    Explore at:
    csv, application/rdfxml, xml, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.

    Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.

    CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:

    https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

    https://www.cdc.gov/covid-data-tracker/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Archived Data Notes:

    November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.

    November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths. 

    November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.

    December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.

    January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.

    January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.

    January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.

    January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.

    January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.

    January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.

    February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.

    February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.

    February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.

    February 16, 2023: Due to a reporting cadence change, Maine’s

  11. a

    Link to COVID-19 Trends for U.S. Counties - (Originally Published by Esri)

    • hub.arcgis.com
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2020). Link to COVID-19 Trends for U.S. Counties - (Originally Published by Esri) [Dataset]. https://hub.arcgis.com/documents/2c589cdc90224f4692a931d51e5a0a07
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.The maps in this series depict the current trends of the COVID-19 pandemic in the United States at the level of counties or territories. Includes Puerto Rico, Guam, Northern Marianas, U.S. Virgin Islands. These maps are updated daily.

  12. COVID-19 US County JHU Data & Demographics

    • kaggle.com
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heads or Tails (2023). COVID-19 US County JHU Data & Demographics [Dataset]. https://www.kaggle.com/headsortails/covid19-us-county-jhu-data-demographics/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 1, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Heads or Tails
    Area covered
    United States
    Description

    Context

    The United States have recently become the country with the most reported cases of 2019 Novel Coronavirus (COVID-19). This dataset contains daily updated number of reported cases & deaths in the US on the state and county level, as provided by the Johns Hopkins University. In addition, I provide matching demographic information for US counties.

    Content

    The dataset consists of two main csv files: covid_us_county.csv and us_county.csv. See the column descriptions below for more detailed information. In addition, I've added US county shape files for geospatial plots: us_county.shp/dbf/prj/shx.

    • covid_us_county.csv: COVID-19 cases and deaths which will be updated daily. The data is provided by the Johns Hopkins University through their excellent github repo. I combined the separate "confirmed cases" and "deaths" files into a single table, removed a few (I think to be) redundant geo identifier columns, and reshaped the data into long format with a single date column. The earliest recorded cases are from 2020-01-22.

    • us_counties.csv: Demographic information on the US county level based on the (most recent) 2014-18 release of the Amercian Community Survey. Derived via the great tidycensus package.

    Column Description

    COVID-19 dataset covid_us_county.csv:

    • fips: County code in numeric format (i.e. no leading zeros). A small number of cases have NA values here, but can still be used for state-wise aggregation. Currently, this only affect the states of Massachusetts and Missouri.

    • county: Name of the US county. This is NA for the (aggregated counts of the) territories of American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and Virgin Islands.

    • state: Name of US state or territory.

    • state_code: Two letter abbreviation of US state (e.g. "CA" for "California"). This feature has NA values for the territories listed above.

    • lat and long: coordinates of the county or territory.

    • date: Reporting date.

    • cases & deaths: Cumulative numbers for cases & deaths.

    Demographic dataset us_counties.csv:

    • fips, county, state, state_code: same as above. The county names are slightly different, but mostly the difference is that this dataset has the word "County" added. I recommend to join on fips.

    • male & female: Population numbers for male and female.

    • population: Total population for the county. Provided as convenience feature; is always the sum of male + female.

    • female_percentage: Another convenience feature: female / population in percent.

    • median_age: Overall median age for the county.

    Acknowledgements

    Data provided for educational and academic research purposes by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).

    Licence

    The github repo states that:

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
    

    Version history

    • In version 1, a small number of cases had values of `county == "Unassigned". Those have been superseded.
    • Version 5: added US county shape files
  13. e

    Weekly Summary of U.S. COVID-19 Trends

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Jun 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Weekly Summary of U.S. COVID-19 Trends [Dataset]. https://coronavirus-resources.esri.com/maps/5490c0a73846465c821c647f0fd0435a
    Explore at:
    Dataset updated
    Jun 17, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This map is updated weekly and currently shows data through March 5, 2023, which will be the final update of this map.Note: Nebraska stopped reporting county level-results on 5/25/2021 and re-started on 9/26/21 with a lump-sum representing the previous four months - this impacted the weekly sum of cases fields.It shows COVID-19 Trend for the most recent Monday with a colored dot for each county. The larger the dot, the longer the county has had this trend. Includes Puerto Rico, Guam, Northern Marianas, U.S. Virgin Islands.The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility. Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 8, 2020. This map is updated every Monday* based on data through the previous Sunday. See also this version of the map for another perspective.COVID-19 Trends show how each county is doing and are updated daily. We base the trend assignment on the number of new cases in the past two weeks and the number of active cases per 100,000 people. To learn the details for how trends are assigned, see the full methodology. There are five trends:Emergent - New cases for the first time or in counties that have had zero new cases for 60 or more days.Spreading - Low to moderate rates of new cases each day. Likely controlled by local policies and individuals taking measures such as wearing masks and curtailing unnecessary activities.Epidemic - Accelerating and uncontrolled rates of new cases.Controlled - Very low rates of new cases.End Stage - One or fewer new cases every 5 days in larger populations and fewer in rural areas.*Starting 8/22/2021 we began updating on Mondays instead of Tuesdays as a result of optimizing the scripts that produce the weekly analysis. For more information about COVID-19 trends, see the full methodology. Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.

  14. Weekly Summary of U.S. COVID-19 Trends

    • beta-search-prod-pre-a-hub.hub.arcgis.com
    Updated Jul 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). Weekly Summary of U.S. COVID-19 Trends [Dataset]. https://beta-search-prod-pre-a-hub.hub.arcgis.com/datasets/UrbanObservatory::weekly-summary-of-u-s-covid-19-trends-1
    Explore at:
    Dataset updated
    Jul 4, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    United States
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This map is updated weekly and currently shows data through Mar 5, 2023. Notes: as of 5/25/2021, Nebraska stopped sharing COVID-19 testing and on 9/26/21 began, but with a lump sum for the previous four months. Nebraska's reporting became unconsumable by JHU on July 1, 2022. Maryland stopped reporting results for several weeks on 12/4/2021 due to a website hack.It shows COVID-19 Trend for the most recent Monday with a colored dot for each county. The larger the dot, the longer the county has had this trend.Includes Puerto Rico, Guam, Northern Marianas, U.S. Virgin Islands.The intent of this map is to give more context than just the current day of new data because daily data for COVID-19 cases is volatile and can be unreliable on the day it is first reported. Weekly summaries in the counts of new cases smooth out this volatility.Click or tap on a county to see a history of trend changes and a weekly graph of new cases going back to February 1, 2020.For more information about COVID-19 trends, see the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.

  15. Cases Statistics

    • citymgm.hub.arcgis.com
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Montgomery ArcGIS Online (2020). Cases Statistics [Dataset]. https://citymgm.hub.arcgis.com/maps/CityMGM::cases-statistics
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset provided by
    https://arcgis.com/
    Authors
    City of Montgomery ArcGIS Online
    Area covered
    Description

    This layer presents the 50 states and the District of Columbia of the United States. The state boundaries are generalized to improve draw performance and be used effectively at a national level and have no Puerto Rico data.

  16. Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED

    • data.cdc.gov
    • healthdata.gov
    • +1more
    application/rdfxml +5
    Updated Jul 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED [Dataset]. https://data.cdc.gov/widgets/yviw-z6j5?mobile_redirect=true
    Explore at:
    csv, application/rssxml, tsv, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 10, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    Note: The cumulative case count for some counties (with small population) is higher than expected due to the inclusion of non-permanent residents in COVID-19 case counts.

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration. CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • Cases and deaths are based on date of report and not on the date of symptom onset. CDC calculates rates in this data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data were organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts were calculated as the week-to-week change in reported cumulative cases and deaths (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the week before.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues. CDC also worked with jurisdictions after the end of the public health emergency declaration to finalize county data.

    • Source: The weekly archived dataset is based on county-level aggregate count data
    • Confirmed/Probable Cases/Death breakdown: Cumulative cases and deaths for each county are included. Total reported cases include probable and confirmed cases.
    • Time Series Frequency: The weekly archived dataset contains weekly time series data (i.e., one record per week per county)

    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the daily archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implement these case classifications. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, counts of confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions reported probable cases and deaths to CDC. Confirmed and probable case definition criteria are described here: "https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-covid-19/">Coronavirus Disease 2019 (COVID-19) 2023 Case Definition | CDC Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths COVID-19 deaths were reported to CDC from several sources since the beginning of the pandemic including aggregate death data and NCHS Provisional Death Counts. Historic information presented on the COVID Data Tracker pages were based on the same source (Aggregate Data) as the present dataset until the expiration of the public health emergency declaration on May 11, 2023; however, the NCHS Death Counts are based on death certificate data that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Counts from previous weeks were continually revised as more records were received and processed.

    Number of Jurisdictions Reporting There were 60 public health jurisdictions that reported cases and deaths of COVID-19. This included the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. In total there were 3,222 counties for which counts were tracked within the 60 public health jurisdictions.

    Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.

    Note: In early 2020, Alaska enacted changes to their counties/boroughs due to low populations in certain areas:

    Case and death counts for Yakutat City and Borough, Alaska, are shown as 0 by default. Case and death counts for Hoonah-Angoon Census Area, Alaska, represent total cases and deaths in residents of Hoonah-Angoon Census Area, Alaska, and Yakutat City and Borough, Alaska. Case and death counts for Bristol Bay Borough, Alaska, are shown as 0 by default. Case and death counts for Lake and Peninsula Borough, Alaska, represent total cases and deaths in residents of Lake and Peninsula Borough, Alaska, and Bristol Bay Borough, Alaska.

    Historical cases and deaths are not tracked separately in the county level datasets, and differences in weekly new cases and deaths could exist when county-level data are aggregated to the state-level (i.e., when compared to this dataset: https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36).

  17. COVID_19 Datasets

    • kaggle.com
    Updated Mar 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ognev Denis (2022). COVID_19 Datasets [Dataset]. https://www.kaggle.com/datasets/ognevdenis/covid-19-datasets/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 17, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ognev Denis
    Description

    Context

    This dataset was collected from data received via this APi.

    Content

    “[Recovered cases are a] more important metric to track than Confirmed cases.”— Researchers for the University of Virginia’s COVID-19 dashboard

    If the number of total cases were accurately known for every country then the number of cases per million people would be a good indicator as to how well various countries are handling the pandemic.

    column nameDtypedescription
    0indexint64index
    1continentobjectAny of the world's main continuous expanses of land (Europe, Asia, Africa, North and South America, Oceania)
    2countryobjectA country is a distinct territorial body
    3populationfloat64The total number of people in the country
    4dayobjectYYYY-mm-dd
    5timeobjectYYYY-mm-dd T HH :MM:SS+UTC
    6cases_newobjectThe difference in relation to the previous record of all cases
    7cases_activefloat64Total number of current patients
    8cases_criticalfloat64Total number of current seriously ill
    9cases_recoveredfloat64Total number of recovered cases
    10cases_1M_popobjectThe number of cases per million people
    11cases_totalint64Records of all cases
    12deaths_newobjectThe difference in relation to the previous record of all cases
    13deaths_1M_popobjectThe number of cases per million people
    14deaths_totalfloat64Records of all cases
    15tests_1M_popobjectThe number of cases per million people
    16tests_totalfloat64Records of all cases

    Countries:

    Datasets contend data about covid_19 from 232 countries - Afghanistan - Albania - Algeria - Andorra - Angola - Anguilla - Antigua-and-Barbuda - Argentina - Armenia - Aruba - Australia - Austria - Azerbaijan - Bahamas - Bahrain - Bangladesh - Barbados - Belarus - Belgium - Belize - Benin - Bermuda - Bhutan - Bolivia - Bosnia-and-Herzegovina - Botswana - Brazil - British-Virgin-Islands - Brunei - Bulgaria - Burkina-Faso - Burundi - Cabo-Verde - Cambodia - Cameroon - Canada - CAR - Caribbean-Netherlands - Cayman-Islands - Chad - Channel-Islands - Chile - China - Colombia - Comoros - Congo - Cook-Islands - Costa-Rica - Croatia - Cuba - Curaçao - Cyprus - Czechia - Denmark - Diamond-Princess - Diamond-Princess- - Djibouti - Dominica - Dominican-Republic - DRC - Ecuador - Egypt - El-Salvador - Equatorial-Guinea - Eritrea - Estonia - Eswatini - Ethiopia - Faeroe-Islands - Falkland-Islands - Fiji - Finland - France - French-Guiana - French-Polynesia - Gabon - Gambia - Georgia - Germany - Ghana - Gibraltar - Greece - Greenland - Grenada - Guadeloupe - Guam - Guatemala - Guinea - Guinea-Bissau - Guyana - Haiti - Honduras - Hong-Kong - Hungary - Iceland - India - Indonesia - Iran - Iraq - Ireland - Isle-of-Man - Israel - Italy - Ivory-Coast - Jamaica - Japan - Jordan - Kazakhstan - Kenya - Kiribati - Kuwait - Kyrgyzstan - Laos - Latvia - Lebanon - Lesotho - Liberia - Libya - Liechtenstein - Lithuania - Luxembourg - Macao - Madagascar - Malawi - Malaysia - Maldives - Mali - Malta - Marshall-Islands - Martinique - Mauritania - Mauritius - Mayotte - Mexico - Micronesia - Moldova - Monaco - Mongolia - Montenegro - Montserrat - Morocco - Mozambique - MS-Zaandam - MS-Zaandam- - Myanmar - Namibia - Nepal - Netherlands - New-Caledonia - New-Zealand - Nicaragua - Niger - Nigeria - Niue - North-Macedonia - Norway - Oman - Pakistan - Palau - Palestine - Panama - Papua-New-Guinea - Paraguay - Peru - Philippines - Poland - Portugal - Puerto-Rico - Qatar - Réunion - Romania - Russia - Rwanda - S-Korea - Saint-Helena - Saint-Kitts-and-Nevis - Saint-Lucia - Saint-Martin - Saint-Pierre-Miquelon - Samoa - San-Marino - Sao-Tome-and-Principe - Saudi-Arabia - Senegal - Serbia - Seychelles - Sierra-Leone - Singapore - Sint-Maarten - Slovakia - Slovenia - Solomon-Islands - Somalia - South-Africa - South-Sudan - Spain - Sri-Lanka - St-Barth - St-Vincent-Grenadines - Sudan - Suriname - Sweden - Switzerland - Syria - Taiwan - Tajikistan - Tanzania - Thailand - Timor-Leste - Togo - Tonga - Trinidad-and-Tobago - Tunisia - Turkey - Turks-and-Caicos - UAE - Uganda - UK - Ukraine - Uruguay - US-Virgin-Islands - USA - Uzbekistan - Vanuatu - Vatican-City - Venezuela - Vietnam - Wallis-and-Futuna - Western-Sahara - Yemen - Zambia - Zimbabw-

  18. Sample size targets, by enrollment category.

    • plos.figshare.com
    xls
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leora I. Horwitz; Tanayott Thaweethai; Shari B. Brosnahan; Mine S. Cicek; Megan L. Fitzgerald; Jason D. Goldman; Rachel Hess; S. L. Hodder; Vanessa L. Jacoby; Michael R. Jordan; Jerry A. Krishnan; Adeyinka O. Laiyemo; Torri D. Metz; Lauren Nichols; Rachel E. Patzer; Anisha Sekar; Nora G. Singer; Lauren E. Stiles; Barbara S. Taylor; Shifa Ahmed; Heather A. Algren; Khamal Anglin; Lisa Aponte-Soto; Hassan Ashktorab; Ingrid V. Bassett; Brahmchetna Bedi; Nahid Bhadelia; Christian Bime; Marie-Abele C. Bind; Lora J. Black; Andra L. Blomkalns; Hassan Brim; Mario Castro; James Chan; Alexander W. Charney; Benjamin K. Chen; Li Qing Chen; Peter Chen; David Chestek; Lori B. Chibnik; Dominic C. Chow; Helen Y. Chu; Rebecca G. Clifton; Shelby Collins; Maged M. Costantine; Sushma K. Cribbs; Steven G. Deeks; John D. Dickinson; Sarah E. Donohue; Matthew S. Durstenfeld; Ivette F. Emery; Kristine M. Erlandson; Julio C. Facelli; Rachael Farah-Abraham; Aloke V. Finn; Melinda S. Fischer; Valerie J. Flaherman; Judes Fleurimont; Vivian Fonseca; Emily J. Gallagher; Jennifer C. Gander; Maria Laura Gennaro; Kelly S. Gibson; Minjoung Go; Steven N. Goodman; Joey P. Granger; Frank L. Greenway; John W. Hafner; Jenny E. Han; Michelle S. Harkins; Kristine S. P. Hauser; James R. Heath; Carla R. Hernandez; On Ho; Matthew K. Hoffman; Susan E. Hoover; Carol R. Horowitz; Harvey Hsu; Priscilla Y. Hsue; Brenna L. Hughes; Prasanna Jagannathan; Judith A. James; Janice John; Sarah Jolley; S. E. Judd; Joy J. Juskowich; Diane G. Kanjilal; Elizabeth W. Karlson; Stuart D. Katz; J. Daniel Kelly; Sara W. Kelly; Arthur Y. Kim; John P. Kirwan; Kenneth S. Knox; Andre Kumar; Michelle F. Lamendola-Essel; Margaret Lanca; Joyce K. Lee-lannotti; R. Craig Lefebvre; Bruce D. Levy; Janet Y. Lin; Brian P. Logarbo Jr.; Jennifer K. Logue; Michele T. Longo; Carlos A. Luciano; Karen Lutrick; Shahdi K. Malakooti; Gail Mallett; Gabrielle Maranga; Jai G. Marathe; Vincent C. Marconi; Gailen D. Marshall; Christopher F. Martin; Jeffrey N. Martin; Heidi T. May; Grace A. McComsey; Dylan McDonald; Hector Mendez-Figueroa; Lucio Miele; Murray A. Mittleman; Sindhu Mohandas; Christian Mouchati; Janet M. Mullington; Girish N. Nadkarni; Erica R. Nahin; Robert B. Neuman; Lisa T. Newman; Amber Nguyen; Janko Z. Nikolich; Igho Ofotokun; Princess U. Ogbogu; Anna Palatnik; Kristy T. S. Palomares; Tanyalak Parimon; Samuel Parry; Sairam Parthasarathy; Thomas F. Patterson; Ann Pearman; Michael J. Peluso; Priscilla Pemu; Christian M. Pettker; Beth A. Plunkett; Kristen Pogreba-Brown; Athena Poppas; J. Zachary Porterfield; John G. Quigley; Davin K. Quinn; Hengameh Raissy; Candida J. Rebello; Uma M. Reddy; Rebecca Reece; Harrison T. Reeder; Franz P. Rischard; Johana M. Rosas; Clifford J. Rosen; Nadine G. Rouphael; Dwight J. Rouse; Adam M. Ruff; Christina Saint Jean; Grecio J. Sandoval; Jorge L. Santana; Shannon M. Schlater; Frank C. Sciurba; Caitlin Selvaggi; Sudha Seshadri; Howard D. Sesso; Dimpy P. Shah; Eyal Shemesh; Zaki A. Sherif; Daniel J. Shinnick; Hyagriv N. Simhan; Upinder Singh; Amber Sowles; Vignesh Subbian; Jun Sun; Mehul S. Suthar; Larissa J. Teunis; John M. Thorp Jr.; Amberly Ticotsky; Alan T. N. Tita; Robin Tragus; Katherine R. Tuttle; Alfredo E. Urdaneta; P. J. Utz; Timothy M. VanWagoner; Andrew Vasey; Suzanne D. Vernon; Crystal Vidal; Tiffany Walker; Honorine D. Ward; David E. Warren; Ryan M. Weeks; Steven J. Weiner; Jordan C. Weyer; Jennifer L. Wheeler; Sidney W. Whiteheart; Zanthia Wiley; Natasha J. Williams; Juan P. Wisnivesky; John C. Wood; Lynn M. Yee; Natalie M. Young; Sokratis N. Zisis; Andrea S. Foulkes (2023). Sample size targets, by enrollment category. [Dataset]. http://doi.org/10.1371/journal.pone.0286297.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Leora I. Horwitz; Tanayott Thaweethai; Shari B. Brosnahan; Mine S. Cicek; Megan L. Fitzgerald; Jason D. Goldman; Rachel Hess; S. L. Hodder; Vanessa L. Jacoby; Michael R. Jordan; Jerry A. Krishnan; Adeyinka O. Laiyemo; Torri D. Metz; Lauren Nichols; Rachel E. Patzer; Anisha Sekar; Nora G. Singer; Lauren E. Stiles; Barbara S. Taylor; Shifa Ahmed; Heather A. Algren; Khamal Anglin; Lisa Aponte-Soto; Hassan Ashktorab; Ingrid V. Bassett; Brahmchetna Bedi; Nahid Bhadelia; Christian Bime; Marie-Abele C. Bind; Lora J. Black; Andra L. Blomkalns; Hassan Brim; Mario Castro; James Chan; Alexander W. Charney; Benjamin K. Chen; Li Qing Chen; Peter Chen; David Chestek; Lori B. Chibnik; Dominic C. Chow; Helen Y. Chu; Rebecca G. Clifton; Shelby Collins; Maged M. Costantine; Sushma K. Cribbs; Steven G. Deeks; John D. Dickinson; Sarah E. Donohue; Matthew S. Durstenfeld; Ivette F. Emery; Kristine M. Erlandson; Julio C. Facelli; Rachael Farah-Abraham; Aloke V. Finn; Melinda S. Fischer; Valerie J. Flaherman; Judes Fleurimont; Vivian Fonseca; Emily J. Gallagher; Jennifer C. Gander; Maria Laura Gennaro; Kelly S. Gibson; Minjoung Go; Steven N. Goodman; Joey P. Granger; Frank L. Greenway; John W. Hafner; Jenny E. Han; Michelle S. Harkins; Kristine S. P. Hauser; James R. Heath; Carla R. Hernandez; On Ho; Matthew K. Hoffman; Susan E. Hoover; Carol R. Horowitz; Harvey Hsu; Priscilla Y. Hsue; Brenna L. Hughes; Prasanna Jagannathan; Judith A. James; Janice John; Sarah Jolley; S. E. Judd; Joy J. Juskowich; Diane G. Kanjilal; Elizabeth W. Karlson; Stuart D. Katz; J. Daniel Kelly; Sara W. Kelly; Arthur Y. Kim; John P. Kirwan; Kenneth S. Knox; Andre Kumar; Michelle F. Lamendola-Essel; Margaret Lanca; Joyce K. Lee-lannotti; R. Craig Lefebvre; Bruce D. Levy; Janet Y. Lin; Brian P. Logarbo Jr.; Jennifer K. Logue; Michele T. Longo; Carlos A. Luciano; Karen Lutrick; Shahdi K. Malakooti; Gail Mallett; Gabrielle Maranga; Jai G. Marathe; Vincent C. Marconi; Gailen D. Marshall; Christopher F. Martin; Jeffrey N. Martin; Heidi T. May; Grace A. McComsey; Dylan McDonald; Hector Mendez-Figueroa; Lucio Miele; Murray A. Mittleman; Sindhu Mohandas; Christian Mouchati; Janet M. Mullington; Girish N. Nadkarni; Erica R. Nahin; Robert B. Neuman; Lisa T. Newman; Amber Nguyen; Janko Z. Nikolich; Igho Ofotokun; Princess U. Ogbogu; Anna Palatnik; Kristy T. S. Palomares; Tanyalak Parimon; Samuel Parry; Sairam Parthasarathy; Thomas F. Patterson; Ann Pearman; Michael J. Peluso; Priscilla Pemu; Christian M. Pettker; Beth A. Plunkett; Kristen Pogreba-Brown; Athena Poppas; J. Zachary Porterfield; John G. Quigley; Davin K. Quinn; Hengameh Raissy; Candida J. Rebello; Uma M. Reddy; Rebecca Reece; Harrison T. Reeder; Franz P. Rischard; Johana M. Rosas; Clifford J. Rosen; Nadine G. Rouphael; Dwight J. Rouse; Adam M. Ruff; Christina Saint Jean; Grecio J. Sandoval; Jorge L. Santana; Shannon M. Schlater; Frank C. Sciurba; Caitlin Selvaggi; Sudha Seshadri; Howard D. Sesso; Dimpy P. Shah; Eyal Shemesh; Zaki A. Sherif; Daniel J. Shinnick; Hyagriv N. Simhan; Upinder Singh; Amber Sowles; Vignesh Subbian; Jun Sun; Mehul S. Suthar; Larissa J. Teunis; John M. Thorp Jr.; Amberly Ticotsky; Alan T. N. Tita; Robin Tragus; Katherine R. Tuttle; Alfredo E. Urdaneta; P. J. Utz; Timothy M. VanWagoner; Andrew Vasey; Suzanne D. Vernon; Crystal Vidal; Tiffany Walker; Honorine D. Ward; David E. Warren; Ryan M. Weeks; Steven J. Weiner; Jordan C. Weyer; Jennifer L. Wheeler; Sidney W. Whiteheart; Zanthia Wiley; Natasha J. Williams; Juan P. Wisnivesky; John C. Wood; Lynn M. Yee; Natalie M. Young; Sokratis N. Zisis; Andrea S. Foulkes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ImportanceSARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.MethodsRECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.DiscussionRECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.RegistrationNCT05172024.

  19. u

    Visibility, collaboration and impact of the Cuban scientific output on...

    • portalinvestigacion.uniovi.es
    Updated 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hernández-García, Frank; Corrales-Reyes, Ibraín Enrique; Vitón-Castillo, Adrián Alejandro; Mejia, Christian R.; Hernández-García, Frank; Corrales-Reyes, Ibraín Enrique; Vitón-Castillo, Adrián Alejandro; Mejia, Christian R. (2023). Visibility, collaboration and impact of the Cuban scientific output on COVID-19 in Scopus [Dataset]. https://portalinvestigacion.uniovi.es/documentos/668fc492b9e7c03b01be166a
    Explore at:
    Dataset updated
    2023
    Authors
    Hernández-García, Frank; Corrales-Reyes, Ibraín Enrique; Vitón-Castillo, Adrián Alejandro; Mejia, Christian R.; Hernández-García, Frank; Corrales-Reyes, Ibraín Enrique; Vitón-Castillo, Adrián Alejandro; Mejia, Christian R.
    Description

    An observational, descriptive and cross-sectional study was conducted through a bibliometric analysis of Cuban scientific output on COVID-19, published in journals indexed in Scopus. The following bibliometric indicators were studied: -Number of documents (Ndoc). Total number of documents in which at least one of the authors is affiliated with a Cuban institution. -Percentage of documents (% Ndoc) with respect to the total of the studied articles. -Citations (NCit). Total citations received by articles indexed in Scopus. -Cited articles (Cited doc). Total number of published articles that have been cited at least once according to Scopus. -Citations per document (Cpd). Average number of received citations. -Types of collaboration: ✓No collaboration (NoCollab). Documents in which a national institution appears, regardless of whether more than one author, group or department participates. ✓National collaboration (NC). Documents signed by more than one Cuban institution. ✓International Collaboration (IC). Documents in which the affiliation of their authors includes the address in more than one country. ✓International and National Collaboration (IC & NC). Documents signed by more than one Cuban institution and, at least, one foreign institution. -H-index. This index considers both the number of articles and the citations they receive. An author has an h = x index if he/she has x articles that have been cited at least x times [43]. This indicator is also used to characterize groups (a group of authors, a department, or a country). -Quartiles (Q). According to the SCImago Journal & Country Rank (SJR), the journals indexed in Scopus are placed in quartiles, where those in the first quartile have the highest impact. There are journals that do not appear in the ranking (non-ranked) due to their recent inclusion in the database [44]. -High-quality publications (% Q1). Percentage of publications in journals included in the quartile of maximum visibility. -Articles in Spanish (Ndoc Sp). Articles published in Spanish. -Articles in English (Ndoc Eng). Articles published in English. -Overlap (Ndoc Sp & Eng). Articles published in two languages, in this case, both in Spanish and English. -Scientific leadership (% Lead). Percentage of articles from a country in which the corresponding author belongs to a Cuban institution. These are referred to as lead documents [45]. -% Q1 Lead. Percentage of articles in journals included in the first quartile in which the corresponding author is affiliated with a Cuban institution. -% IC Lead. Percentage of articles in which the authors' affiliation includes the address of more than one country and the corresponding author is affiliated with a Cuban institution. Data collection and processing: To retrieve the publications, Scopus (http://www.scopus.com) was accessed on March 12, 2021, and an advanced search was performed using a filter by country (Cuba), source (journals) and type of articles (article and review). Most of the terms used for the search were extracted from previous bibliometric articles and the PubMed Medical Subject Headings (MeSH) related to the disease included in the MeSH catalog in its 2021 update were also used: COVID-19 vaccines, COVID-19 testing, COVID-19 serological testing and COVID-19 nucleic acid testing. The search strategy we used is shown in Table 1.

    Search strategy. Operator Field Search term TITLE-ABS-KEY 2019 ncov, 2019 novel coronavirus, 2019 novel coronavirus (2019-ncov), 2019 novel coronavirus disease, 2019 novel coronavirus pneumonia, 2019-nCoV, 2019-novel CoV, coronavirus 2019, coronavirus disease 2019, cov-19, covid, COVID-19, COVID-19 vaccines, COVID-19 testing, COVID-19 serological testing, COVID-19 nucleic acid testing, covid-19 diagnosis, covid-19 pandemic, covid-19 pneumonia, COVID-19 virus infection, covid-2019 epidemic, ncov-2019, new coronavirus, novel coronavirus, novel coronavirus outbreak, novel coronavirus pneumonia, SARS-CoV-2, sars-cov-2 infection, severe acute respiratory syndrome coronavirus 2, Wuhan coronavirus AND SRCTYPE j AND AFFILCOUNTRY Cuba AND LIMIT-TO DOCTYPE, "ar" OR DOCTYPE, "re" Initially, 134 articles with Cuban authorship were retrieved and after normalization, one article related to dramaturgy was eliminated, which had the term COVID-19 in the abstract and was published in the Theatre Journal. Similarly, 45 articles published in English were detected, and after a manual review it was found that six of these had been published in Spanish.

    In regard to Latin American scientific output, the same filters were used as in the previous strategy and we could obtain information corresponding to Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican Republic, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, Uruguay and Venezuela. The SCImago Journal & Country Rank platform (http://www.scimagojr.com) was accessed to know the location of the journals by the quartile they were in 2019. The analysis of scientific cooperation networks among countries was performed with VOSviewer software version 1.6.15 and the full counting method. The scientific cooperation networks consist of nodes representing the countries involved in the collaboration, and links connecting the collaborating nodes. The thickness of the links represents the intensity of the collaboration in terms of number of articles.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Globalen LLC, Puerto Rico Total Covid cases, end of month, March, 2023 - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Puerto-Rico/covid_total_cases/

Puerto Rico Total Covid cases, end of month, March, 2023 - data, chart | TheGlobalEconomy.com

Explore at:
csv, excel, xmlAvailable download formats
Dataset authored and provided by
Globalen LLC
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Mar 31, 2020 - Mar 31, 2023
Area covered
Puerto Rico
Description

Total Covid cases, end of month in Puerto Rico, March, 2023 The most recent value is 1107686 total Covid cases as of March 2023, an increase compared to the previous value of 1097748 total Covid cases. Historically, the average for Puerto Rico from March 2020 to March 2023 is 393814 total Covid cases. The minimum of 342 total Covid cases was recorded in March 2020, while the maximum of 1107686 total Covid cases was reached in March 2023. | TheGlobalEconomy.com

Search
Clear search
Close search
Google apps
Main menu